

Transport Roads & Maritime Services

Additional crossing of the Clarence River at Grafton

Route Options Development Report Volume 2 – Technical Papers

SEPTEMBER 2012

Transport Roads & Maritime Services

Additional crossing of the Clarence River at Grafton

Route Options Development Report Technical paper – Traffic Assessment

SEPTEMBER 2012

Main Road 83, Summerland Way Additional Crossing of the Clarence River, Grafton Route Options Development Report Technical Paper: Traffic Assessment

transportation planning, design and delivery

Executive Summary

Microsimulation modelling has been used to predict the existing and future traffic conditions in Grafton and its surrounds to inform investigations into the identification of a preferred location for an additional crossing of the Clarence River. The modelling assessed the six options short-listed from the 25 preliminary route options that were assessed as part of the Preliminary Route Options Report.

The microsimulation model covers the Grafton and South Grafton areas. It enables a realistic representation of driver behaviour such as overtaking and lane changing and can also illustrate network performance. As such, microsimulation modelling enables a more detailed investigation of traffic conditions than strategic transport modelling.

This report sets out the details of the microsimulation modelling undertaken and details the modelling results for the six options in the design years of 2019, 2029, 2039 and 2049.

The objectives of this study are to undertake an assessment of the six short-listed route options and understand their performance in terms of operation of the road network. The microsimulation modelling will help assess the performance of the options on initial opening as well as their ability to cater for future traffic growth.

The unique features of the Grafton Bridge required that the selected software, in this case Q-Paramics, was able to analyse the movement of traffic over the Grafton Bridge and through the adjacent road network and assess its operation from both a localised intersection and network perspective.

An existing conditions model was developed to accurately reflect the current operating conditions of the network. This model was calibrated and validated to industry standard guidelines that compare modelled and observed traffic data as well as by a visual assessment of operating conditions, including vehicle queues.

Future year growth was adopted from the strategic modelling assessment which was developed in consultation with Clarence Valley Council and the Department of Planning and Infrastructure.

A "do minimum" model was established to consider the future year operating conditions and included a number of network improvements necessary for the model to operate reasonably in the future. However, even with these improvements, the existing bridge and road network approaches are unable to cater for the estimated future traffic demand and the system is forecast to become heavily congested in the 2029 peak periods and beyond. As such the "do minimum" modelling revealed an inability for the road network to cater for the expected growth to 2029, even with these improvements.

In order to accurately define the likely future traffic conditions for each option, the method of 'Equilibrium Assignment' was used. This approach assumes that drivers choose their travel routes based on their previous experience travelling through the network, hence drivers will have decided when they commence their journey, as to whether or not they will travel via the new or existing bridge.

The modelling results showed that at the time of the assumed year of opening (2019), all six options perform similarly. However, as traffic demands increase in the later years (2039 and 2049), the options that are in close proximity to the existing bridge (Options E, A and C) perform better than those further downstream (Options 11, 14 and 15), in terms of average speed, number of stops and total distance travelled.

The results also indicate:

- The "do minimum" results show that if the assumptions of growth are realised by 2029 the demands across the river will significantly reduce the performance of the network potentially causing grid lock during the peak periods.
- The network performance in Options 14 and 15 deteriorates in future years with average speeds in the AM peak up to 40% less than the other options by 2049.
- By 2049 the number of stops recorded in both the AM and PM peaks for Options 14 and 15 are substantially higher than for Options E, A, C and 11. This is a result of the majority of motorists still wanting to use the existing bridge with those options.
- From 2029 and beyond, point to point travel times indicate that Options E and C provide the shortest travel times between South Grafton and Grafton, and that Options 14 and 15 provide the best travel times between Butterfactory Lane and the Pacific Highway.
- In 2049 Option A provides the best average speed during the AM peak, however during the PM peak, the average speed of Option A is 20% lower than the best options for the PM peak (Options E and C).
- All options with a new bridge in close proximity to the existing bridge (i.e. Options E, A and C) experience a greater drop in volumes on the existing bridge when compared to those downstream (Options 11, 14 and 15).

The modelling presented in this report indicates that each of the options improved the operation of the network with the options close to the existing bridge (Options E, A and C) performing better than the downstream options.

Table of Contents

1.	Intro	oduction	1
	1.1	Background	1
	1.2	Study Objectives	1
	1.3	Background Traffic and Transport Studies	1
2.	Арр	proach to Traffic Assessment	7
	2.1	Introduction	7
	2.2	Purpose of Microsimulation Model	7
	2.3	Study Methodology	7
	2.4	Study Area	8
	2.5	Traffic Data	10
3.	Mic	rosimulation Model Development	11
	3.1	Introduction	11
	3.2	Model Build Methodology	11
	3.3	Calibration and Validation	13
	3.4	Base Year Model Results (2011)	16
4.	Futu	ure Year Growth	18
	4.1	Future Year Growth	18
	4.2	Pacific Highway Bypass	18
	4.3	Bridge Demands	19
5.	"Do	Minimum" Model Results	20
	5.1	Purpose	20
	5.2	Approach	20
	5.3	Network Results ("Do Minimum")	21
	5.4	Approach to "Do Minimum" Economic Appraisal	24
6.	Rou	te Option Description	25
	6.1	Introduction	25
7.	Res	ults of the Modelling of the Route Options	28
	7.1	Approach to Future Year Modelling (Equilibrium Assignment Method)	28
	7.2	Truck Movements on Existing Bridge	28
	7.3	Daily and Yearly Expansion Factors	28
	7.4	General Network Statistics	29
	7.5	Model Results	30
	7.6	Peak Period Results Comparison	34
	7.7	Point to Point Travel Times	39

Ass	sessment of Route Options	44
8.1	Introduction	44
8.2	Indicator: Total Time Travelled By All Vehicles across the Road Network	44
8.3	Indicator: Total Distance Travelled By All Vehicles across the Road Network	46
8.4	Indicator: Total Time Travelled by Heavy Vehicles across the Road Network	47
8.5	Indicator: Total Distance Travelled by Heavy Vehicles across the Road Netw	ork48
8.6	Indicator: Average Travel Time between Grafton and South Grafton Using th Existing Bridge	ne 49
8.7	Indicator: Average Travel Time between the Pacific Highway and the Summerland Way	50
8.8	Indicator: Estimated Fuel Consumption at 10 years After Opening (for year 2029)	51
_		

Appendices

8.

- A: Calibration and Validation Report
- B: Route Options
- C: Equilibrium Assignment Results
- D: Full Network Results
- E: Point to Point Travel Time Results and Routes
- F: Bridge Volumes
- G: Annualised BCR Calculations for All Recorded Trips (Completed and Incompleted)

Figures

Figure 2.1:	Study Methodology	8
Figure 2.2:	Main Road 83 Summerland Way – Study Area	9
Figure 3.1:	Microsimulation Model Extents	12
Figure 3.2:	AM Peak Queue Length Comparison	15
Figure 3.3:	PM Peak Queue Length Comparison	15
Figure 5.1:	Total Number of Completed Trips (Vehicles) and Average Speed (km/h) Year 2011 to 2019 (AM Peak Hour – 8am to 9am)	23
Figure 5.2:	Total Number of Completed Trips (Vehicles) and Average Speed (km/h) Year 2011 to 2019 (PM Peak Hour – 4pm to 5pm)	23
Figure 7.1:	Bridge Utilisation (AM Peak)	34
Figure 7.2:	Bridge Utilisation (PM Peak)	35
Figure 7.3:	Average Vehicle Speed (AM Peak) - All Vehicles	36
Figure 7.4:	Average Vehicle Speed (PM Peak) – All Vehicles	36
Figure 7.5:	Number of Completed Trips (AM Peak) – All Vehicles	37

GTAconsultants

Table of Contents -

Figure 7.6:	Number of Completed Trips (PM Peak) – All Vehicles	37
Figure 7.7:	Vehicle-Kilometres Travelled (AM Peak) – All Vehicles	38
Figure 7.8:	Vehicle-Kilometres Travelled (PM Peak) – All Vehicles	38
Figure 7.9:	Total Number of Stops (AM Peak) – All Vehicles	39
Figure 7.10:	Total Number of Stops (PM Peak) – All Vehicles	39
Figure 7.11:	Pacific Highway / Tyson Street to Pound Street / Prince Street via Existing Bridge (AM Peak Northbound)	40
Figure 7.12:	Pound Street / Prince Street to Pacific Highway / Tyson Street via Existing Bridge (AM Peak Southbound)	40
Figure 7.13:	Pacific Highway / Tyson Street to Pound Street / Prince Street via Existing Bridge (PM Peak Northbound)	41
Figure 7.14:	Pound Street / Prince Street to Pacific Highway / Tyson Street via Existing Bridge (PM Peak Southbound)	41
Figure 7.15:	Pacific Highway / Tyson Street to Summerland Way / Butterfactory Lane via Proposed Bridge (AM Peak Northbound)	42
Figure 7.16:	Summerland Way / Butterfactory Lane to Pacific Highway / Tyson Street via Proposed Bridge (AM Peak Southbound)	42
Figure 7.17:	Pacific Highway / Tyson Street to Summerland Way / Butterfactory Lane via Proposed Bridge (PM Peak Northbound)	43
Figure 7.18:	Summerland Way / Butterfactory Lane to Pacific Highway / Tyson Street via Proposed Bridge (PM Peak Southbound)	43

Tables

Table 1.1:	Heavy Vehicles* Crossing the Grafton Bridge on 19 th August 2010 (5am to 7pm)	4
Table 1.2:	All Vehicle Trip Types Crossing Grafton Bridge on 19 th August 2010 (5am to 7pm)	4
Table 2.1:	Sources of Traffic Data	10
Table 3.1:	Microsimulation Modelling Calibration and Validation Criteria	13
Table 3.2:	Calibration Summary	14
Table 3.3:	AM Travel Time Summary	14
Table 3.4:	PM Travel Time Summary	14
Table 3.5:	Modelled AM and PM Peak Hour Network Performance (2011)	17
Table 4.1:	Summary of Traffic Growth for each Design Year	18
Table 4.2:	Summary of Bridge Demands	19
Table 4.3:	AM Peak Cross River Demands, Strategic versus Microsimulation	
	(2 hour)	19
Table 5.1:	Modelled AM Peak Hour (8am to 9am) Network Performance	22
Table 5.2:	Modelled PM Peak Hour (4pm to 5pm) Network Performance	22

Table of Contents

Table 5.3:	Indicative "Do Minimum" Results for 2029 to 2049	24
Table 6.1:	Summary of Route Options	26
Table 7.1:	Option E Network Performance (AM Peak: 8am to 9am)	30
Table 7.2:	Option E Network Performance (PM Peak: 4pm to 5pm)	30
Table 7.3:	Option A Network Performance (AM Peak: 8am to 9am)	31
Table 7.4:	Option A Network Performance (PM Peak: 4pm to 5pm)	31
Table 7.5:	Option C Network Performance (AM Peak: 8am to 9am)	31
Table 7.6:	Option C Network Performance (PM Peak: 4pm to 5pm)	32
Table 7.7:	Option 11 Network Performance (AM Peak: 8am to 9am)	32
Table 7.8:	Option 11 Network Performance (PM Peak: 4pm to 5pm)	32
Table 7.9:	Option 14 Network Performance (AM Peak: 8am to 9am)	33
Table 7.10:	Option 14 Network Performance (PM Peak: 4pm to 5pm)	33
Table 7.11:	Option 15 Network Performance (AM Peak: 8am to 9am)	33
Table 7.12:	Option 15 Network Performance (PM Peak: 4pm to 5pm)	34
Table 8.1:	Traffic Indicators for the Assessment of the Route Options	44
Table 8.2:	Total Time Travelled by All Vehicles across the Road Network (VHT)	45
Table 8.3:	Total Distance Travelled by All Vehicles across the	
	Road Network (VKT)	46
Table 8.4:	Total Time Travelled by Heavy Vehicles across the	. –
	Road Network (VHT)	47
Table 8.5:	Total Distance Travelled by Heavy Vehicles across the Road Network (VKT)	48
Table 8.6:	Average Travel Time between Grafton and South Grafton using	40
	the Existing Bridge	49
Table 8.7:	Average travel time between the Pacific Highway and the	
	Summerland Way via New Bridge	50
Table 8.8:	Results of the Indicator for Calculation of Peak Hour Fuel Usage	51

1. Introduction

1.1 Background

GTA Consultants (GTA) have been engaged by Arup, on behalf of Roads and Maritime Services (RMS), to provide traffic and transport input for Main Road 83 Summerland Way, Additional Crossing of the Clarence River at Grafton.

GTA has recently undertaken strategic transport modelling of Grafton and South Grafton on 25 preliminary route options that were identified by the RMS in GTA's report *Main Road 83 Summerland Way, Additional Crossing of the Clarence River, Grafton – Strategic Traffic Assessment* dated 11 November 2011 (henceforth referred to as GTA's 2011 Strategic Traffic Assessment). The strategic transport modelling was completed using Cube-TRIPS and used a range of inputs to assess the existing and future travel patterns in and around Grafton and South Grafton.

In January 2012, six route options were short-listed to be investigated further as part of the process to identify a location for a new crossing. The short-listed options were identified in the *Preliminary Route Options Report – Final (RMS, January 2012)* which also provided details of the technical investigation undertaken on the 25 preliminary options and the process that selected the short-listed options.

This Route Options Development Report (RODR) – Technical Paper: Traffic Assessment sets out the details of the microsimulation modelling undertaken for the six options and details the results for the design years of 2019, 2029, 2039 and 2049.

1.2 Study Objectives

This study follows on from previous studies (as described in the following section) undertaken to assess the existing and future traffic conditions in the Grafton area and to inform investigations into the identification of a preferred location for an additional crossing of the Clarence River.

The objectives of this study are to undertake an assessment of the six short-listed route options and understand their performance in terms of the operation of the road network. The microsimulation modelling will help assess the performance of the options on initial opening as well as their ability to cater for future traffic growth.

The outputs of this report allow a comparison of the traffic efficiency and performance of the road layouts of each option, from the assumed year of opening in 2019 through to 30 years after opening in 2049.

1.3 Background Traffic and Transport Studies

A range of background reports and data have been reviewed as part of this package of work as they provide relevant and useful information into the development of the modelling. This section sets out a brief summary of the reports and their relevance.

'Additional Crossing of the Clarence River', RTA NSW, February 2003

This report notes that the need for an additional link over the Clarence River, to improve connectivity between Grafton and South Grafton, has been discussed for many years. The existing bridge was opened to vehicular traffic in 1932 and correspondence in relation to a second crossing dates back to 1960.

As part of the study, a community questionnaire was conducted with some 1,900 responses received. The responses included 73% of persons having experienced delays on the bridge either daily (37%) or weekly (36%).

In conclusion the study suggests the most feasible location for an additional river crossing would be in the vicinity of the existing bridge.

'South Grafton Traffic Study', GTA Consultants, February 2009

The report sets out an assessment of the existing conditions for the South Grafton area and assessed expected future traffic conditions. It was concluded that the Grafton Bridge is the 'bottle neck' resulting in congested conditions within South Grafton, especially during the AM peak period. If no changes were to be introduced to the existing road network, travel times and queuing would progressively increase and the network would become more vulnerable to blockages or grid lock caused by the additional traffic demand.

A number of options were assessed (including increased Bridge capacity) and the results of the microsimulation modelling indicated that those options would provide marginal benefits to the operating performance of the network, predominantly due to the constraints experienced at the Grafton Bridge.

'Existing Conditions Report', GTA Consultants, December 2009

This report sets out the results of the modelling and analysis assuming the current road network and shows the likely traffic outcomes if no additional river crossing capacity is provided.

Regional and microsimulation modelling of Grafton and its surrounds was undertaken to develop an understanding of the existing and future traffic demands and patterns within Grafton. In particular, future demands across the river were estimated for a range of land uses.

The strategic modelling was undertaken to understand the existing travel behaviour in Grafton and to determine future year growth rates for Grafton and South Grafton. A limiting feature of the strategic model was the lack of detailed land use planning and information which resulted in marginal changes to the travel patterns as a result of a new bridge.

As a consequence of the limited land use planning information, a growth rate of 1.9% per annum was adopted for testing purposes to the year 2039, along with strategic model sensitivity testing for various other growth rates.

Origin destination surveys completed by GTA indicated that 53% of trips using the Grafton Bridge travel between external destinations and Grafton, 45% of trips are internal whilst only 2% of trips were those travelling directly through Grafton and South Grafton.

Existing conditions ("do minimum") modelling determined that as traffic demand across the river increases, additional river crossing capacity will be required and that doing nothing will lead to severely degraded and unacceptable road network operating conditions. The report concluded the following:

- An additional bridge crossing in the vicinity of the existing bridge should be considered.
- Road approach options to determine the optimum location and impact on the movement of traffic in and around Grafton and South Grafton should be assessed.

'Preliminary Road Corridor Options Report', GTA Consultants, February 2010

Four preliminary corridor options and their approaches to an additional river crossing in the vicinity of the existing bridge were tested using microsimulation to determine the impact that each option would have on traffic movement in and around Grafton and South Grafton.

The results of the modelling indicated:

- Traffic demands across the Grafton River are anticipated to more than double over the life of a new bridge.
- The Yellow and Blue Options (RTA Options A and B) would increase bridge capacity but are constrained by the existing intersection capacity on the approaches to the bridge.
- The Yellow and Blue Options (RTA Options A and B) would have minimal impact on the travel patterns within Grafton and South Grafton.
- The Yellow and Blue Options (RTA Options A and B) would experience increased network congestion after 2019, and by 2039 the network would not be able to handle the additional traffic and would reach grid lock.
- The Green and Red Options (RTA Options C and D) would create alternative routes between South Grafton and Grafton and provide opportunity for traffic to distribute across the network.
- The Green and Red Options (RTA Options C and D) would provide good connectivity between Grafton and South Grafton, reducing the reliance on key intersections approaching the existing river crossing.

The modelling showed that traffic delays in peak periods are forcing changes in people's travel behaviour and daily activity patterns, and as a result are constraining development. Grafton and South Grafton are to some extent being forced to operate as separate towns.

If additional traffic capacity is provided across the river, there would be a number of effects. Peak period traffic volumes would immediately increase, as people revert to their preferred travel behaviour and activity patterns. In the medium term, there would be changes in land use, as the city would be able to function more as a single unit, and traffic across the river would probably grow at a higher than average rate for several years. In the longer term, growth in population, employment and traffic would revert to a more normal rate.

'Additional Crossing of the Clarence River – Heavy Vehicle Study', GTA Consultants, February 2011

The RTA commissioned GTA to undertake a study of heavy vehicle movements in Grafton, South Grafton and adjacent areas on the arterial road network, including the Grafton Bridge and Summerland Way. The study aimed to provide a comprehensive understanding of the heavy vehicle travel patterns in Grafton to inform the route selection of the additional crossing of the Clarence River at Grafton.

The study methodology was designed in consultation with the RTA project team and consisted of three survey types:

- i a detailed origin and destination (OD) survey to capture vehicle movements crossing the Grafton Bridge and within Grafton and South Grafton
- ii automated classified tube count surveys at key locations in Grafton and South Grafton to obtain a summary of traffic volumes, directions, daily profiles and vehicle class proportions
- iii questionnaire surveys of bridge users and businesses in the local area.

The surveys were designed to provide a summary of the travel behaviour of heavy vehicle movements in Grafton and South Grafton. Table 1.1 shows a breakdown of heavy vehicle movements that crossed the Grafton Bridge on Thursday the 19th of August 2010 between 5am and 7pm.

	1.388	100%
Internal - Grafton to / from South Grafton	658	47%
External to Grafton / South Grafton	567	41%
External to External (through trips)	163	12%
Trip Type	Matched Heavy Vehicles	Percentage of Total (%)

Table 1.1: Heavy Vehicles* Crossing the Grafton Bridge on 19th August 2010 (5am to 7pm)

*Heavy Vehicles includes buses and are for Austroads classes 3 – 12

The OD results showed that approximately 88% of heavy vehicles crossing the Grafton Bridge have an origin and / or destination within Grafton or South Grafton, and 12% of heavy vehicles are considered through trips that do not have an origin or destination within Grafton or South Grafton.

The proportion of external to external heavy vehicles is higher than that of all vehicles types crossing the Grafton Bridge which is summarised in Table 1.2.

Table 1.2:	All Vehicle Trip	Types Crossing Graf	ton Bridge on 19 th	August 2010 (5c	am to 7pm)
------------	------------------	---------------------	--------------------------------	-----------------	------------

Total	26,554	100%
Internal - Grafton to/from South Grafton	15,466	58%
External to Grafton / South Grafton	10,360	39%
External to External (through trips)	728	3%
Trip Type	Matched Vehicles	Percentage of total (%)

The results showed that approximately 97% of vehicles crossing the bridge had an origin and / or destination within Grafton or South Grafton, and 3% of vehicles made through trips that did not have an origin and destination within Grafton or South Grafton. This is comparable to the previous study in March 2009 which indicated 2% of traffic using the bridge was through traffic.

Other key findings of the OD surveys were:

- Approximately 63% of northbound vehicles crossing the Clarence River have an origin in South Grafton and 92% of northbound vehicles crossing the Clarence River travel to a destination in Grafton south of Butterfactory Lane.
- Approximately 90% of southbound vehicles crossing the Clarence River have an origin in Grafton, south of Butterfactory Lane and 65% of southbound vehicles crossing the Clarence River travel to a destination in South Grafton.
- Approximately 62% of heavy vehicles travelling northbound across the Clarence River have an origin in South Grafton and 80% of heavy vehicles travelling northbound across the Clarence River travel to a destination in Grafton, south of Butterfactory Lane.

• Approximately 72% of heavy vehicles travelling southbound across the Clarence River have an origin in Grafton, south of Butterfactory Lane and 56% of heavy vehicles travelling southbound across the Clarence River travel to a destination in South Grafton.

Tube counters were placed at strategic locations in Grafton and South Grafton to supplement the OD information. The surveys indicated that:

- The Grafton Bridge carries approximately 27,580 vehicles per week day.
- 5% of vehicles crossing the Grafton Bridge were heavy vehicles (both directions).
- During the AM peak period, traffic flow is 61%/39% in favour of the northbound into Grafton, whilst during the PM peak period traffic flow is 53%/47% in favour of the southbound.
- Weekday trips between 7am and 10pm represent approximately 94% of all trips crossing the bridge.
- 91% of heavy vehicles cross the Clarence River between 7am and 10pm.
- Villiers Street north of Oliver Street carries 10% heavy vehicles (783 per day), which is 60% more than Prince Street north of Oliver Street which carries 4% heavy vehicles (301 vehicles per day).
- The Pacific Highway carries approximately 2,250 heavy vehicles per day (22% of Pacific Highway Traffic) and is significantly higher than the Summerland Way north of Butterfactory Lane which carries 609 heavy vehicles per day (9%), the Gwydir Highway which carries 443 heavy vehicles per day (9%) and Lawrence Road which carries 94 heavy vehicles per day (9%).

The businesses and bus companies surveyed as part of this study indicated that:

- It was common for most companies to establish routes to avoid peak hour traffic congestion.
- Some companies have arranged business times so that deliveries are made outside of the peak periods, although at times this was noted to be unavoidable.
- The most prominent issue raised was the bridge curfew during morning and afternoon peak periods and the effect it has on business operations (e.g. scheduling).
- Late running of services was noted due to bridge congestion which led to incurring of extra cost in the operation of catch up and head off services.
- Perceptions of incidents on the bridge were a concern due to a lack of access to and from each side of the bridge in emergency situations for ambulances and the like.

'Additional Crossing of the Clarence River, Grafton – Strategic Traffic Assessment', GTA Consultants, November 2011

Strategic transport modelling of Grafton and its surrounds was undertaken to develop a detailed understanding of the existing and future traffic demands and patterns for the Grafton and South Grafton areas and surrounds. The modelling involved reviewing population and land use forecasts, as well as traffic volumes in Grafton and South Grafton. It was developed in consultation with Clarence Valley Council and the Department of Planning and Infrastructure to assess the traffic impacts of existing and likely future development and to estimate future demands across the River up to 2049.

OD data indicates that a high proportion of bridge users have destinations in either Grafton or South Grafton, and three per cent of bridge traffic use the bridge as a 'through' route. Future changes in travel patterns have been based on forecast population growth data and planned development patterns in Grafton, South Grafton, surrounds and nearby areas.

Modelling a "do minimum" scenario, which involves modelling existing conditions with only upgrading of the Pacific Highway to cater for planned future development at Clarenza, determined that as traffic demand across the river increases, additional capacity would be required. Doing nothing would therefore lead to deteriorating road network operating conditions due to prolonged periods of congestion on the existing bridge and significantly increased travel times.

The traffic demand across the river currently exceeds the capacity of the existing bridge at peak times. Traffic delays in peak periods are changing people's travel behaviour and daily activity patterns, and as a result may be constraining development. Traffic count data suggests that many bridge users time their trips to avoid the peak period traffic congestion. Grafton and South Grafton are to some extent operating as separate towns.

25 preliminary route options in five strategic corridors for an additional river crossing of the Clarence River were tested using the strategic transport model. The options were tested to determine the impact each option would have on traffic movement in and around Grafton and South Grafton from a network perspective. The results of the modelling indicated:

- Information provided by Clarence Valley Council and the Department of Planning and Infrastructure indicates that population growth is expected to occur at an average rate of 1.6 per cent per annum between 2011 and 2049.
- The strategic transport modelling indicates that traffic demands across the river would increase by 108 per cent over the next 30 years.
- Additional river crossing capacity would be required in future to accommodate the additional demand as a result of growth, primarily at Junction Hill, South Grafton and Clarenza.
- Doing nothing would lead to unacceptable road network operating conditions.
- Traffic utilisation of the existing bridge is subject to the location of the new bridge. Generally, the further a new bridge is located away from the existing bridge, the greater the volume of traffic that will continue to utilise the existing bridge.
- For Corridors 1, 2, 3 and 4, modelling results indicate that the options within a corridor perform in a similar manner.
- Modelling results also indicate that there are some significant differences in performance between the options in Corridor 5.

If additional traffic capacity is provided across the river, there would be a number of effects. Peak period traffic volumes would immediately increase, as people revert to their preferred travel behaviour and activity patterns. In the medium term, there are likely to be changes in land use, as the city would be able to function more as a single unit, and traffic across the river could grow at a slightly higher than average rate for several years. In the longer term, growth in population, employment and traffic is expected to revert to previously mentioned rates of growth.

2. Approach to Traffic Assessment

2.1 Introduction

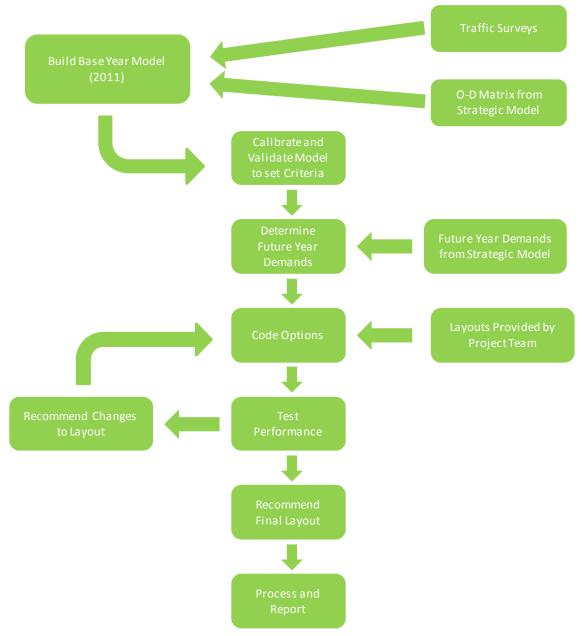
Following the completion of the strategic transport model assessment set out in GTA's 2011 Strategic Traffic Assessment, six route options were short-listed to undergo further detailed assessment. The six options have been assessed using microsimulation modelling, as set out in this report.

The new bridge connections to the existing road network for each of the route options and any other relevant road network upgrades within the study area discussed in Section 5.2.2 and Section 6 were determined by the project team and are reflected in the microsimulation model. Future year traffic predictions determined from the strategic transport model (discussed in Section 4) have also been applied to the microsimulation models to represent the future year demands of 2019, 2029, 2039 and 2049.

2.2 Purpose of Microsimulation Model

Microsimulation models are generally prepared in cases where an existing network is already oversaturated or a proposed scheme is likely to over-saturate the study network. In such cases what is of interest is the impact of over-saturation on upstream intersections and how their method of control (stop, give way or signal control) can be modified to make sure that effective strategies can be designed and tested.

The unique features of the Grafton Bridge (in terms of its alignment, traffic conditions and connectivity) required that the selected software, in this case Q-Paramics, was able to analyse the movement of traffic over the Grafton Bridge and through the adjacent road network and assess operation from both a localised intersection and network perspective.


2.3 Study Methodology

Detailed microsimulation modelling using Q- Paramics focussed on assessment of the road network in order to provide key indicators for each option such as link flows, intersection turning movements, delays and travel times.

Figure 2.1 provides a flow chart setting out the overall study methodology (including the strategic transport modelling).

The study methodology is designed to be flexible and iterative to ensure that the best modelling outcomes are achieved.

2.4 Study Area

The study area used for the microsimulation model includes Grafton and South Grafton. The study area includes the existing Clarence River Bridge connecting Grafton and South Grafton and the extent of the study area is shown approximately in Figure 2.2. The microsimulation model considers traffic movements within Grafton and South Grafton, and includes traffic movements to and from the Pacific Highway north and south, the Summerland Way, the Gwydir Highway and Armidale Road.

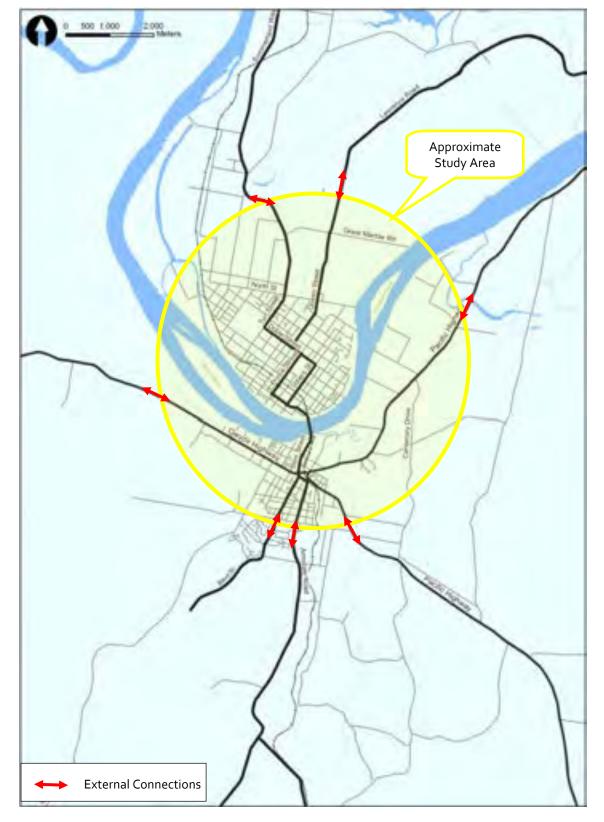


Figure 2.2: Main Road 83 Summerland Way – Study Area

2.5 Traffic Data

Traffic information for the study was obtained from numerous sources including RMS, Clarence Valley Council, previous reports, studies and surveys undertaken as part of this study. The data was sourced to primarily capture the peak periods within the study area and includes the following:

- traffic movement counts
- origin-destination (OD) surveys
- automated traffic counts.

The surveys captured at least one week's worth of data to provide an accurate representation of the existing typical weekly traffic movements and day to day variations in traffic flows and profiles. A summary of the traffic data used for this study is set out in Table 2.1.

Source	Type of Count Data	Date
Surveys undertaken by AusTraffic on behalf of GTA as part of the South Grafton Paramics model, 2007 / 2008	Turning Movement Data and OD Data	2007
Traffic Volume data supplied by Clarence Valley Council (numerous sites)	Two-way daily traffic volume counts at numerous sites across the study area. Data also includes limited average speed data	2006-2009
Surveys undertaken by AusTraffic on behalf of GTA as part of the Additional Crossing of the Clarence River, Grafton – Heavy Vehicle Study, February 2011	OD Surveys for a duration of one week.	2010
Surveys undertaken by TTM Group on behalf of GTA as part of the Additional Crossing of the Clarence River, Grafton – Heavy Vehicle Study, February 2011	Automatic tube count data at numerous sites across the study area for a duration of two weeks.	2010
Surveys undertaken by AusTraffic on behalf of GTA for this assessment	Automatic tube count data at numerous sites across the study area for a duration of two weeks in June and July 2011. Queue length surveys on the southern side of the bridge during the AM peak period on Bent Street and Fitzroy Street during the PM peak.	2011
Travel Time surveys undertaken by GTA	Travel time surveys between Gwydir Hwy and Villiers Street.	2011
Travel Time surveys undertaken by RMS	Travel time surveys were conducted by RMS on additional routes throughout Grafton	2012

Table 2.1: Sources of Traffic Data

All traffic data used as part of this modelling has been reviewed and validated to ensure its appropriateness for use in this assessment.

The AM and PM peak period volumes are shown in the calibration and validation report located in Appendix A.

3. Microsimulation Model Development

3.1 Introduction

Q-Paramics microsimulation modelling is a computer software package that has the ability to individually model each vehicle, including heavy vehicles within a road system. It enables a realistic representation of driver behaviour such as overtaking and lane changing and can also illustrate network performance. Q-Paramics is a particularly useful tool in modelling road networks where the resulting vehicle queuing impacts on upstream intersections. It also allows testing of how the method of control and signal timings, where applicable can be modified to ensure that more effective traffic management strategies can be designed and tested.

3.2 Model Build Methodology

3.2.1 Model Periods and Years

The model covers AM and PM peak hour periods augmented by warm up and cool down periods as follows:

AM Peak Period

- 6:30am to 7:00am (AM warm up period)
- 7:00am to 8:00am (first AM peak hour)
- 8:00am to 9:00am (second AM peak hour)
- 9:00am to 10:00am (third AM peak hour)
- 10:00am to 10:30am (AM cool down period)

PM Peak Period

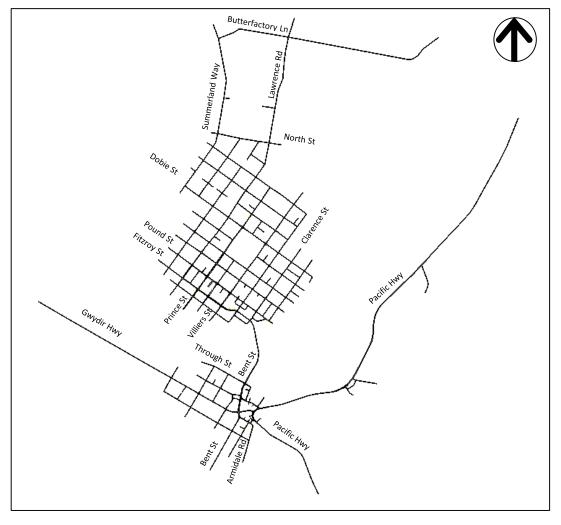
- 2:30pm to 3:00pm (PM warm up period)
- 3:oopm to 4:oopm (first PM peak hour)
- 4:00pm to 5:00pm (second PM peak hour)
- 5:00pm to 6:00pm (third PM peak hour)
- 6:00pm to 7:00pm (PM cool down period)

Thirty minute warm up periods were considered appropriate to pre-load the network before the peak hours.

The model has a base year of 2011 and forecast years 2019, 2029, 2039 and 2049.

3.2.2 Model Extents

The study area includes the major roads of Summerland Way, Lawrence Road, Fitzroy Street, Prince Street, Villiers Street, Dobie Street, Bent Street, Gwydir Highway Armidale Road and the Pacific Highway and includes (but not limited to) the following key intersections:


- Fitzroy Street / Prince Street
- Prince Street / Pound Street
- Fitzroy Street / Villiers Street

- Pound Street / Villiers Street
- Bent Street / Through Street
- Bent Street / Ryan Street (Gwydir Highway)
- Pacific Highway / Gwydir Highway
- Pacific Highway / Iolanthe Street / Spring Street
- Villiers Street / Dobie Street
- Prince Street / Dobie Street
- Dobie Street / Turf Street
- Queen Street / Dobie Street
- Summerland Way / Butterfactory Lane

The Q-Paramics model includes all intersecting roads within the area and is shown in Figure 3.1.

Figure 3.1: Microsimulation Model Extents

The model extents were selected to adequately deal with existing and future year testing in terms of vehicle queuing and blocking back.

Other model features included into the model were:

Network layout and geometric data

- Traffic composition
- Traffic Demand
- Zone structure
- Public Transport

Each of the features is discussed in detail in the model calibration and validation report which is located in Appendix A.

3.3 Calibration and Validation

Prior to using models for the purposes of testing, they must be calibrated and validated before they can provide meaningful results. The model outputs are compared to a series of observed and recorded data sets that, when considered holistically, determine its suitability for further use. This section provides a summary of the calibration and validation process.

3.3.1 Calibration and Validation Guidelines

The calibration and validation process was carried out in accordance with the criteria set out in the 'UK Design Manual for Roads and Bridges (Vol 12, Section 2, Part 1 – Traffic Appraisal in Urban Areas)'. These guidelines and criteria are internationally accepted best practice.

The guidelines provide criteria to compare modelled and observed flows for items such as turn counts, link flows, vehicle travel times and a visual assessment of operating conditions including vehicle queues. The targets set out in the guidelines are shown in Table 3.1.

Criteria and Measurements	Calibration Acceptable Targets
Hourly Flows, Modelled Versus Observed	
Individual Link Flows	
Within 15%, for 700 veh/h < Flow < 2700 veh/h	> 85% of cases
Within 100 veh/h, for Flow < 700 veh/h	> 85% of cases
Sum of All Link Flows	Within 5% of sum of all link counts
GEH ^[1] Statistic < 5 for Individual Link Flows	> 85% of cases
Travel Times, Model Versus Observed	
Journey Times Within 15% (or 1 min, if higher)	> 85% of cases
Visual Audits	
Visually Acceptable Speed-Flow Relationship	To analyst's satisfaction
Visually Acceptable Queuing	To analyst's satisfaction

Table 3.1: Microsimulation Modelling Calibration and Validation Criteria

[1] The GEH statistic is a standard measure of the 'goodness of fit' between observed and modelled flows. For further detail refer to Appendix A of this report.

3.3.2 Seed Runs

In order to test the robustness of the model, five seeds were tested and the average results of the five seed runs were reported. A 'seed' is a random number that within the software creates a different modelled outcome and is intended to reflect day to day traffic variation. Best practice has established that five seed runs are adequate. The seed run numbers utilised in the analysis are 28, 560, 2849, 7771

and 86524 and have been applied consistently throughout the existing and future year models. These numbers are consistent with RMS guidelines.

3.3.3 Calibration and Validation Results

Hourly Flows, Modelled Versus Observed

A summary of the comparison of modelled and observed flows is provided in Table 3.2.

Criteria UK Design Manual for Roads and Bridges	Within 15% for 700 veh/h < Flow < 2700 veh/h	Within 100 veh/h, for Flow < 700 veh/h	GEH ^[1] less than 5	Sum of all link flows
Target	>85%	>85%	>85%	within 5%
AM (8:00 - 9:00)	100%	98%	86%	Yes (0.0%)
PM (4:00 – 5:00)	100%	97%	87%	Yes (0.8%)

Table 3.2: Calibration Summary

[1] The GEH statistic is a standard measure of the 'goodness of fit' between observed and modelled flows. For further detail refer to Appendix A of this report.

Table 3.2 indicates that there is a high correlation between modelled and observed traffic counts with all criteria specified in Table 3.1 being met or exceeded.

Travel Times

The observed and modelled northbound and southbound travel times between the Gwydir Highway at Bent Street and Villiers Street have been compared in Table 3.3 and Table 3.4.

Table 3.3: AM Travel Time Summary

	AM Peak Hour (8:00am to 9:00am)					
Direction	Minimum Observed (sec)	Maximum Observed (sec)	Average Observed (sec)	Modelled Average (sec)	Difference (sec)	% Difference
Northbound (Gwydir Hwy to Villiers St)	221	405	355	397	42	12%
Southbound (Villiers St to Gwydir Hwy)	147	172	160	174	14	9%

Table 3.4: PM Travel Time Summary

		PM I	Peak Hour (4:00	0pm to 5:00pm)	I	
Direction	Minimum Observed (sec)	Maximum Observed (sec)	Average Observed (sec)	Modelled Average (sec)	Difference (sec)	% Difference
Northbound (Gwydir Hwy to Villiers St)	171	220	204	182	-22	-11%
Southbound (Prince St to Through St)	211	394	303	289	-14	-5%

Table 3.3 and Table 3.4 indicate that during the AM and PM peak, average modelled travel times are generally consistent with average observed travel times and are within acceptable limits specified in the calibration and validation criteria (Table 3.1).

IS11352

The average modelled travel times are within the minimum and maximum observed travel times during both peak hours, except for the AM southbound which is 2 seconds above the maximum observed time.

Queue Lengths

Queue lengths on the bridge and approaches to the bridge were observed during site observations in order to ensure that the model is consistent with existing patterns.

Northbound queue lengths were recorded on Bent Street from the bridge to Gwydir Highway. The southbound queue lengths were recorded on Fitzroy Street and Prince Street. The graphs presented in Figure 3.2 and Figure 3.3 show the comparison of observed and modelled queue lengths on the north and south approaches to the bridge during the AM and PM peak periods respectively.

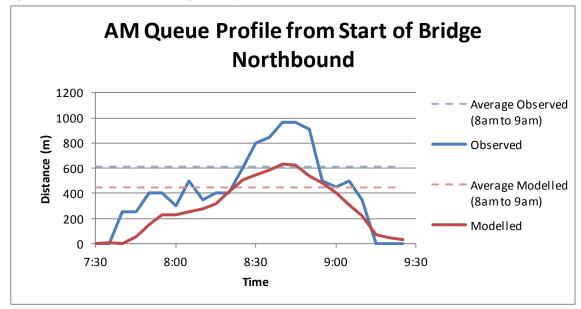
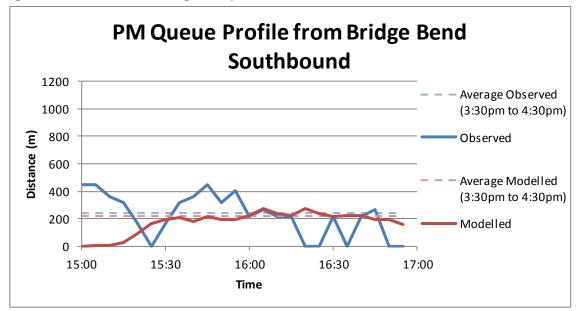



Figure 3.2: AM Peak Queue Length Comparison

Figure 3.3: PM Peak Queue Length Comparison

IS11352

Main Road 83, Summerland Way, Additional Crossing of the Clarence River, Grafton Technical Paper: Traffic Assessment, Route Options Development Report

Figure 3.2 and Figure 3.3 indicate a general correlation or fit between the observed and modelled queue lengths, in particular their average queue lengths. Furthermore, visual observations of the model suggest that queuing conditions within the model extents generally reflect the observed conditions.

It is noted that during the PM peak, there is an oscillating queue length on the north approach. This was observed as being the results of a specific incident such as a truck stopping on the bridge. The graphs indicate that localised incidents easily result in extended queue lengths.

Summary

A summary of the calibration and validation results is as follows:

- Modelled turning movement counts achieved a high level of correlation to observed counts.
- Modelled travel times also reflected observed travel times and are within the nominated guidelines.
- Queue lengths on the critical approaches to the bridge over the Clarence River reflect the observed conditions.

The quality of input data, model building and calibration has produced a sound model, validated by travel time and queue length data. GTA considers that the model is 'fit for purpose'.

Full details of the calibration and validation process and results are presented in the Microsimulation Model Calibration and Validation Report located in Appendix A.

3.4 Base Year Model Results (2011)

3.4.1 General Network Statistics

The results of the network performance parameters include the following:

- number of completed vehicle trips per reported simulation period
- number of incompleted vehicle trips per reported simulation period which are those trips that start within the modelled period but do not arrive at their destination prior to the end of the modelled period. Their details are logged and reported with the completed trip results
- number of unreleased vehicles are those unable to be released into the network due to congested network conditions
- average kilometres per completed vehicle per reported simulation period
- average travel time per completed vehicle per reported simulation period
- average speed of all completed and incompleted vehicles per reported simulation period
- number of stops of all completed and incompleted vehicles per reported simulation period
 A stop is recorded when a vehicle travels below 5km/h
- vehicle-kilometres travelled (VKT) of all completed and incompleted vehicles per reported simulation period
- vehicle hours travelled (VHT) of all completed and incompleted vehicles per reported simulation period.

Table 3.5 is a summary of the modelling of the existing network performance for the AM and PM peak hours. The one hour periods from 8-9AM and 4-5PM have been reported as these are considered the critical hours in the morning and afternoon peak periods.

Statistic	AM Peak (8am to 9am)	PM Peak (4pm to 5pm)
Number of Completed Trips	7315	7,384
Number of Incompleted Trips	496	463
Number of Unreleased Vehicles	0	0
Average Km per vehicle (km/veh)	3.0	3.0
Average Travel Time per vehicle (min/veh)	4.2	4.3
Average Speed (km/h)	42.2	41.5
Number of Stops	21,999	20,144
Vehicle-Kilometres Travelled (VKT)	23,199	22,984
Vehicle Hours Travelled (VHT)	550	554

Table 3.5: Modelled AM and PM Peak Hour Network Performance (2011)

The results have been reported for all completed trips during the relevant time periods and are useful for comparison of future year concept options.

4. Future Year Growth

4.1 Future Year Growth

Future year growth for Grafton and its surrounds in the microsimulation model is consistent with that used in GTA's 2011 Strategic Traffic Assessment. The growth assumptions are briefly discussed in Section 1.3. The strategic model and microsimulation model zones have been matched, where possible, to ensure a level of consistency between the growth rates applied for each respective zone. The increase was determined as a rate per annum.

The growth rates (increase per annum) for the relevant design years were applied to the calibrated and validated 2011 matrix as follows:

- i Traffic productions and attractions for each zone have been assumed to have the same growth (for example all trips to and from zone 1 adopted the same growth rate).
- Where two zones have different forecast growth rates for the origin or destination, the greater growth rate has been adopted (for example trips to and from zone 2 may have a greater forecasted increase than trips to and from zone 1, as such the growth rate for zone 2 trips corresponding with zone 1 has been adopted).
- iii Each origin and destination pair within the overall matrix has been checked and the growth rate assigned.
- iv The future year demand matrices were developed for the design years in 2019, 2029, 2039 and 2049.
- v For growth between 2011 and 2019, trips were distributed across the network so that the theoretical capacity of the bridge is not exceeded in the peak direction. This approach is considered representative of expected operating conditions prior to the introduction of additional capacity and a resumption of "normal" travel patterns in Grafton after the introduction of additional capacity.

Based on the above, a summary of the overall growth rates for trips within the microsimulation model is set out in Table 4.1 for both the AM and PM peak periods.

	AM Peak (70	AM Peak (7am to 9am)		om to 5pm)
Year	Total Trips (vehicles)	Traffic Growth Rate per annum (%)	Total Trips (vehicles)	Traffic Growth Rate per annum (%)
2011	12,456	-	14,641	-
2019	14,040	1.5%	15,963	1.1%
2029	18,130	2.6%	20,554	2.6%
2039	21,232	1.6%	23,833	1.5%
2049	23,047	0.8%	25,577	0.7%

Table 4.1: Summary of Traffic Growth for each Design Year

4.2 Pacific Highway Bypass

For the purposes of this assessment, it has been assumed that the upgrade of the Pacific Highway to bypass South Grafton would be completed by 2019.

4.3 Bridge Demands

Table 4.2 shows the resultant demands for cross river traffic for the relevant time periods and design years.

Table 4.2: Summary of Bridge Demands

Verr	AM Peak (7am	to 9am)	PM Peak (3pm to 5pm)		
Year	Northbound	Southbound	Northbound	Southbound	
2011	2,287	1,496	2,042	2,561	
2019	2,562	1,723	2,475	3,073	
2029	3,643	2,487	3,357	4,150	
2039	4,276	2,876	3,828	4,798	
2049	4,829	3,270	4,157	5,387	

The resultant bridge demands have been compared against those presented as part of the strategic modelling assessment (which is only a 2 hour AM peak model). Table 4.3 summarises the strategic and microsimulation bridge demands.

 Table 4.3:
 AM Peak Cross River Demands, Strategic versus Microsimulation (2 hour)

Veer	Strategic		Microsin	nulation	% Difference		
Year	Northbound	Southbound	Northbound	Southbound	Northbound	Southbound	
2011	2,306	1,573	2,287	1,496	1%	5%	
2019	2,763	1,884	2,562	1,723	7%	9%	
2029	3,760	2,516	3,643	2,487	3%	1%	
2039	4,260	2,852	4,276	2,876	0%	-1%	
2049	4,834	3,229	4,829	3,270	0%	-1%	

Table 4.3 shows that the cross river demands for the AM microsimulation model are within five percent of the strategic model demands for all demand years excluding 2019 which is within nine percent. For 2039 and 2049 the cross river demands for the microsimulation model are very similar to those of the strategic model.

5. "Do Minimum" Model Results

5.1 Purpose

There are several reasons for the development of "do minimum" models. They are:

- to establish that the model will perform as expected in the future years and that the results are logical and sensible
- to establish a justification for road network options by estimating the road network conditions in the future without the options
- to be used as a baseline input to the cost benefit analysis.

The model calibration and validation confirms that the model replicates existing behaviour. It is also important to establish that the model will be capable of making realistic estimates of travel behaviour in the future years. The "do minimum" modelling is used to confirm that the model is performing adequately. This revealed that the assignment technique which determines travel paths needed to be adjusted in order for the model to cater for the demand. This is discussed in Section 7.

The need for an additional bridge has to be established, which is achieved by considering the traffic conditions if a solution is not provided. This is considered a "no build" or "do minimum" situation. A "do minimum" model includes future road works that are committed or funded and expected to be built whether or not a second river crossing goes ahead. The proposed Pacific Highway bypass of Grafton is such an example. The Grafton road system is assessed to show how the traffic system will operate without a second river crossing. In the case of Grafton, the "do minimum" modelling revealed an inability for the road network to cater for the expected growth detailed in Section 4.

The final reason for modelling a "do minimum" is that the benefits of building the option as opposed to not building the option need to be estimated for the purposes of undertaking cost benefit analysis.

5.2 Approach

The approach to developing the "do minimum" model is as follows:

- Identify road network improvements, including those projects with firm commitments or that are required irrespective of whether the second crossing is built.
- Estimate travel demand for the future years based on the population growth detailed in Section 4.1.
- Assign the future demand to the "do minimum" network and assess future year network performance.

5.2.1 Modelled Forecast Years

Traditionally "do minimum" models would be prepared for all forecast years, in this case (2019, 2029, 2039 and 2049). The project team has investigated the future year options and concluded that a "do minimum" option cannot be achieved for all design years without a second bridge being built. The existing bridge and road network approaches are unable to cater for the estimated future traffic demand and the system becomes over congested. The future year bridge demands, as detailed in Section 4.2, exceed the capacity of a single bridge by 2029 and beyond. Only a 2019 "do minimum"

model was established. Microsimulation models are vehicular based and as such physically prevent vehicles from passing through a congested network resulting in grid lock in over-congested conditions.

The approach to the economic appraisal has been adjusted to reflect the inability to establish future year models for all periods. The method for estimating future year benefits is discussed in *Technical Paper: Economic Evaluation*.

Further discussion on this is provided in Section 5.4.

5.2.2 Future Year "Do Minimum" Networks

There are no committed road network upgrades currently planned, except for the upgrade of the Pacific Highway to bypass South Grafton. The "do minimum" model needs to reasonably cater for expected demand and it is likely that some additional roadworks would be necessary to address localised congestion and capacity constraints (constrained situation) as they arise. Four localised network upgrades were considered necessary for the model to operate reasonably in the future. The "do minimum" model road network assumed:

- upgrading of Pound Street to two traffic lanes in each direction between Villiers Street and Prince Street
- upgrading of Gwydir Highway to two traffic lanes in each direction between Pacific Highway and Bent Street
- upgrading of the Villiers Street/ Dobie Street roundabout to improve turning movements for heavy vehicles
- upgrading of the Gwydir Highway/ Skinner Street roundabout from a single roundabout to a two lane roundabout.

These were the only assumed changes from the 2011 base year road network.

5.3 Network Results ("Do Minimum")

The following outputs were obtained from the modelling in order to develop an understanding of the operation of the network for each of the future years:

- number of completed vehicle trips per reported simulation period
- number of incompleted vehicle trips per reported simulation period which are those trips that start within the modelled period but do not arrive at their destination prior to the end of the modelled period. Their details are logged and reported with the completed trip results
- number of unreleased vehicles are those unable to be released into the network due to congested network conditions
- average kilometres per completed vehicle per reported simulation period
- average travel time per completed vehicle per reported simulation period
- average speed of all completed and incompleted vehicles per reported simulation period
- number of stops of all completed and incompleted vehicles per reported simulation period
- vehicle-kilometres travelled (VKT) of all completed and incompleted vehicles per reported simulation period
- vehicle hours travelled (VHT) of all completed and incompleted vehicles per reported simulation period.

IS11352

Table 5.1 and Table 5.2 summarises the "do minimum" network performance results for the AM and PM peak hours, respectively, for 2011 and 2019. The network performance measures are aggregated across the entire modelled area or are averaged for all trips within the model. One hour periods have been reported, corresponding to the critical hours in the morning and afternoon peak periods.

	D V (0011)	
Statistic	Base Year (2011)	"Do Minimum" (2019)
Number of Completed Trips	7315	8,023
Number of Incompleted Trips	496	653
Number of Unreleased Vehicles	0	2
Average Km per vehicle (km/veh)	3.0	3.1
Average Travel Time per vehicle (min/veh)	4.2	4.7
Average Speed (km/h)	42.2	38.4
Number of Stops	21,999	30,764
Vehicle-Kilometres Travelled (VKT)	23,199	26,390
Vehicle Hours Travelled (VHT)	550	686

Table 5.1: Modelled AM Peak Hour (8am to 9am) Network Performance

Table 5.2: Modelled PM Peak Hour (4pm to 5pm) Network Performance

Statistic	Base Year (2011)	"Do Minimum" (2019)
Number of Completed Trips	7,384	7,496
Number of Incompleted Trips	463	863
Number of Unreleased Vehicles	0	128
Average Km per vehicle (km/veh)	3.0	2.9
Average Travel Time per vehicle (min/veh)	4.3	5.5
Average Speed (km/h)	41.5	27.5
Number of Stops	20,144	39,019
Vehicle-Kilometres Travelled (VKT)	22,984	22,837
Vehicle Hours Travelled (VHT)	554	829

The modelling results indicate total trips in 2019 for the AM peak and PM peak hour increase by 10% and 2% respectively. The smaller increase in the PM peak indicates that the road network in the PM peak hour is operating close to capacity and opportunity for growth is limited. This is reflected in "number of stops", the average speed and average travel time per vehicle measures. The "number of stops" is estimated to increase by approximately 94% between 2011 and 2019 for the PM peak. This reflects the likely stop/ start nature of the future congestion network. The average speed, which is an average of all completed trips across the modelled area in the PM peak hour, has declined by 51% from 41.5 km/h to 27.5 km/h. Similarly the average travel time per vehicle, which is an average for all completed trips across the modelled area in the PM peak hour, has increased by 28% from 4.3 minutes to 5.5 minutes.

Figure 5.1 and Figure 5.2 have been prepared to graphically show the increase in total number of completed trips and the expected reduction in average speed. It is not unusual for microsimulation models to have unreleased vehicles if a traffic system is congested. These represent a small fraction of the total demand and the results are considered acceptable.

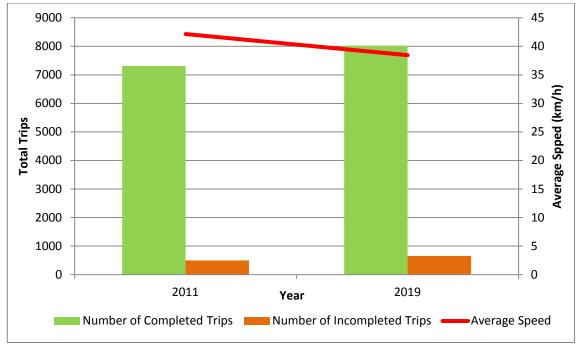


Figure 5.2: Total Number of Completed Trips (Vehicles) and Average Speed (km/h) Year 2011 to 2019 (PM Peak Hour – 4pm to 5pm)

The model results indicate the average speed for the network is expected to decrease from 2011 to 2019. This is reflective of an increase in trips on the wider network and the capacity of parts of the road network to cater for the additional demand.

IS11352 Main Road 83, Summerland Way, Additional Crossing of the Clarence River, Grafton Technical Paper: Traffic Assessment, Route Options Development Report

5.4 Approach to "Do Minimum" Economic Appraisal

For the purposes of this assessment, an alternative approach to estimating the future year economic benefits has been adopted. It was agreed with RMS that these benefits would be estimated by generating an indicative "do minimum" case for the future years of 2029 and beyond. Establishment of this indicative "do minimum" case acknowledges the reality that the existing road network would continue to function beyond 2019 even without an additional bridge. It also conservatively assumes that motorists would accept higher levels of future congestion because of the absence of an alternative route and also adapt to increasing congestion in the middle of the peak periods including (but not limited to):

- rescheduling their trip to less congested periods throughout the day
- changing the number of trips undertaken by choosing alternate modes
- changing their route and/or origin and destination.

Development of the indicative "do minimum" case is intended to replicate the increase in delays and congestion that would occur over time without an additional bridge. It has been established by taking the 2019 "do minimum" model and factoring up the annual VKT and VHT parameters at similar rates to the increases recorded in Options 14 and 15. Options 14 and 15 are considered to more closely represent the anticipated "do minimum" conditions due to the greater distance of the proposed bridge from the new bridge and the town centres of Grafton and South Grafton, resulting in the majority of traffic still attracted to continue using the existing bridge.

This would be considered a conservative approach, especially for travel time (VHT) growth, because without the additional bridge it is likely that VHT growth for the "do minimum" case would be higher than Options 14 and 15 as they have spare capacity on the new bridge, albeit with longer travel times.

The results of the indicative "do minimum" case for the future years of 2029 to 2049 are presented in Table 5.3.

	AM Peak (8ar	n to 9am)	PM Peak (4pm to 5pm)		
Option	Vehicle-Kilometres Travelled (VKT)	Vehicle Hours Travelled (VHT)	Vehicle-Kilometres Travelled (VKT)	Vehicle Hours Travelled (VHT)	
"Do Minimum" 2029	34.945	999	30,244	1,206	
"Do Minimum" 2039	40,901	1,201	35,398	1,450	
"Do Minimum" 2049	44,479	1,363	38,494	1,647	

Table 5.3:	Indicative	"Do	Minimum"	Results	for	2029	to	2049

Annualised results for the "do minimum" case are reported in Appendix G, using the approach to daily and year expansion factors as described in Section 7.3.

6. Route Option Description

6.1 Introduction

The strategic transport modelling assessment assessed 25 preliminary route options within five corridors. In January 2012, six route options to be investigated further as part of the process to identify a location for the crossing were announced. The short-listed options were identified in the Preliminary Route Options Report – Final (January 2012) which also provided details of the technical investigation undertaken on the 25 preliminary options and the process to select the short-listed options.

A summary of the short-listed route options is provided in Table 6.1, whilst each of the short-listed route options are illustrated in Appendix B.

Route Option Description

Table 6.1: Summary of Route Options

Option	New Connection	Underpass/Overpass (no direct connection to bridge approach)	Road Closures	Signalised Intersections	Roundabouts	Priority Junctions	Left-in/Left-out only from side road
E	Between Gwydir Highway/Cowan Street in South Grafton and Villiers Street in Grafton	None	Kennedy Street	Villiers Street/ Fitzroy Street Villiers Street/ Pound Street	Gwydir Highway/Bent Street Gwydir Highway/Skinner Street Gwydir Highway/Cowan Street Cowan Street/Spring Street Pound Street/Duke Street Craig Street/Clarence Street Villiers Street/Dobie Street	Pacific Highway/Gwydir Highway Gwydir Highway/Bligh St Pacific Highway/Iolanthe street Pound Street/Clarence Street	Wharf Street New Street Victoria Street
A	Between Bent St in South Grafton and Fitzroy Street in Grafton, with new bridge just upstream of existing bridge	Bridge Lane Fitzroy Street east/Kent Street	Fitzroy Street east	Bent Street/ Spring Street east {partial} Bent Street/Through Street Fitzroy Street/Villiers Street Villiers Street/Pound Street	Pacific Highway/Gwydir Highway Gwydir Highway/Bent Street/Ryan Street Gwydir Highway/Skinner Street Pound Street/Duke Street Villiers Street/Dobie Street	Pacific Highway/Iolanthe street Pound Street/Clarence Street Clarence Street/Fitzroy Street east	New Street Spring Street west Riverside Drive (left turn from Riverside Drive onto new bridg not permitted) Clarence Street
С	Between Pacific Highway/Gwydir Highway in South Grafton and Clarence Street/Pound Street in Grafton, with new bridge just downstream of existing bridge	Greaves Street	Kent Street Fitzroy Street east Pound Street east	Pound Street/ Clarence Street Pound Street/Villiers Street	Realigned Pacific Highway/Iolanthe Street/bridge approach Pacific Highway/Gwydir Highway Ryan Street/Viaduct Road Gwydir Highway/Skinner Street Craig Street/Clarence Street Pound Street/Duke Street Villiers Street/Dobie Street	Realigned Iolanthe Street/new bridge approach Clarence Street/Fitzroy Street east	Spring Street west Old Pacific Highway Clarence Street north
11	Between Pacific Highway north of McClaers Lane South in Grafton and Fry Street in Grafton	None	McHugh Street Weiley Avenue	No new signalised intersections	Pacific Highway/bridge approach Gwydir Highway/Bent Street Gwydir Highway/Skinner Street Fry Street/Clarence Street Fry Street/Clarence Street Villiers Street/Dobie Street	Pacific Highway/Gwydir Highway Pacific Highway/Iolanthe Street Fry Street/Breimba Street	New Street Kent Street
14	Between Pacific Highway/Centenary Drive in South Grafton and North Street in Grafton	Eggins Lane	Villiers Street south Duke Street Morrison Street Crown Street west Hoof Street east Powell Street west	No new signalised intersections	Pacific Highway/Centenary Drive/bridge approach Gwydir Highway/Bent Street Gwydir Highway/Skinner Street Kirchner Street/Prince Street North Street/Queen Street North Street/Turf Street Villiers Street/Dobie Street	Pacific Highway/Gwydir Highway Pacific Highway/Iolanthe Street Kirchner Street/Villiers Street north New link road/North Street east North Street east/Duke Street north North Street/Challinor Street North Street/Mary Street North Street/ Alice Street North Street/ Davey Avenue west Prince Street/ Hoof Street west Prince Street/Powell Street east	New Street North Street/ Davey Avenue east
15	Between Pacific Highway /Centenary Drive near Clarenza and the Summerland Way just north of Grafton	Eggins Lane	Villiers Street south Duke Street Crown Street west Hoof Street east Powell Street west	No new signalised intersections	Pacific Highway/Centenary Drive/bridge approach Gwydir Highway/Bent Street Gwydir Highway/Skinner Street Kirchner Street/Prince Street New link road/Grafton-Lawrence Road New link road/Summerland Way Villiers Street/ Dobie Street	Pacific Highway/Gwydir Highway Pacific Highway/Iolanthe Street Kirchner Street/Villiers Street north New link road/North Street North Street east/Duke Street north Prince Street/ Arthur Street Prince Street/ Hoof Street west Prince Street/ Powell Street east	New Street

IS11352

Main Road 83, Summerland Way, Additional Crossing of the Clarence River, Grafton Technical Paper: Traffic Assessment, Route Options Development Report

The microsimulation model results and assessment of these options are set out in Section 7.

It should be noted that the option layouts that have been assessed indentify the works required to achieve sufficient capacity for the option to function adequately in 2049, 30 years after the assumed opening date. In practice, construction of the road network upgrades would be staged over time following construction of the new bridge, as traffic demand increases.

7. Results of the Modelling of the Route Options

7.1 Approach to Future Year Modelling (Equilibrium Assignment Method)

The method of 'Equilibrium Assignment' was used to model all future year options. This approach assumes that drivers choose their travel routes based on their previous experience travelling through the network, hence drivers will have decided when they commence their journey as to whether they will travel via the new or existing bridge.

To simulate the knowledge which would be obtained by a driver's real life experience, an iterative modelling process was undertaken in which each model was simulated repetitively with drivers choosing routes based on the delays experienced for each turning movement of the previous simulation. This process was undertaken until 'convergence' was reached. For the purpose of this study, convergence was determined to be a point at which two-way traffic volumes for both the existing and new bridge were showing little variation between subsequent simulation runs.

A copy of the two-way bridge volumes obtained in determining the convergence point for all options can be found in Appendix C.

7.2 Truck Movements on Existing Bridge

Each of the options has been designed to accommodate heavy vehicles and as such, it has been assumed that large heavy vehicles (semi-trailers and B-doubles) would be banned from using the existing bridge (with the exception of Option A where movements on the existing bridge are restricted to one southbound lane only).

Traffic counts undertaken of the area indicate that there are currently a small number of articulated vehicles that utilise the bridge during both the AM and PM peak hours, despite the ban on heavy vehicles during these time periods. For this reason heavy vehicles were not banned on the bridge for the existing conditions. For all options excluding Option A, all articulated vehicles (Austroads User Class 6 to 12) have been banned from the existing bridge.

It is important to recognise that the removal of heavy vehicles from the existing bridge provides some benefit to the approaches and crossing volumes of the existing bridge. These are noted in Section 7.6.

7.3 Daily and Yearly Expansion Factors

The expansion of the peak hour results to daily and yearly values was undertaken to assist in the development of the economic assessment.

In undertaking this assessment, consideration was provided to the likely travel patterns for vehicles during off peak periods for a typical day (midnight to 7am, 9am to 3pm and 5pm to midnight). For example, during the AM peak hours in 2049, vehicles are likely to use routes that may not necessarily be the shortest in distance but will be shorter in travel time, however during the off peak or less

congested periods, vehicles are more than likely to travel the shortest distance between destinations. This distance will also more than likely be the quickest in travel time during the off peak periods.

As such, each of the six options were modelled with off peak travel demands to determine the travel distances and travel times. Using the available existing daily traffic count data, the results from the off peak models were then apportioned accordingly over a typical weekday to determine the off peak results.

The daily results were then obtained by adding the peak hours results for 7-9am and 4-6pm to the off peak results.

Annual results were obtained by using a daily to yearly factor of 335. This number has been determined from the available count data and is the ratio of the annual average daily traffic (AADT) to the weekday average daily traffic.

The following annual results for each option and design year are presented in Appendix G, including a breakdown of the AM peak, PM peak and off peak results:

- vehicle-kilometres travelled (VKT)
- vehicle hours travelled (VHT)
- number of stops
- average speed (km/h)

The results presented in Appendix G includes all recorded trips (i.e. completed and incompleted trips).

7.4 General Network Statistics

As with the "do minimum" results the general network statistics were extracted from the models and include the following:

- number of completed vehicle trips per reported simulation period
- number of incompleted vehicle trips per reported simulation period which are those trips that start within the modelled period but do not arrive at their destination prior to the end of the modelled period. Their details are logged and reported with the completed trip results
- number of unreleased vehicles are those unable to be released into the network due to congested network conditions
- average kilometres per completed (vehicle trip) per reported simulation period
- average travel time per completed (vehicle trip) per reported simulation period
- average speed of all completed and incompleted (vehicle trips) per reported simulation period
- number of stops of all completed and incompleted (vehicle trips) per reported simulation period
- vehicle-kilometres travelled (VKT) of all completed and incompleted (vehicle trips) per reported simulation period
- vehicle hours travelled (VHT) of all completed and incompleted (vehicle trips) per reported simulation period.

For the purpose of obtaining results that represent a typical week data sample, five runs with different seed numbers were performed for each option. Applying different seed numbers changes the profile of

the traffic arrival and therefore represents more reliable replication of real life variation in day-to-day traffic conditions.

7.5 Model Results

A summary of the network statistics for all six route options has been prepared for the AM and PM peak hours respectively and are presented in Table 7.1 to Table 7.12. The network performance measures are aggregated across the entire modelled area or are average for all trips within the model.

	Design Year					
Statistic	2011 [1]	2019	2029	2039	2049	
Number of Completed Trips	7315	7,863	9,959	11,575	12,381	
Number of Incompleted Trips ^[2]	496	425	582	818	1,032	
Number of Unreleased Vehicles ^[3]	0	0	0	0	0	
Average Km per vehicle (km/veh)	3.0	3.0	3.2	3.3	3.3	
Average Travel Time per vehicle (min/veh)	4.2	3.6	3.9	4.0	4.5	
Average Speed (km/h)	42.2	51.2	49.8	48.7	43.7	
Number of Stops	21,999	14,806	23,711	30,458	45,830	
Vehicle-Kilometres Travelled (VKT)	23,199	24,840	33,507	39,365	43,685	
Vehicle Hours Travelled (VHT)	550	485	673	814	1,000	

Table 7.1: Option E Network Performance (AM Peak: 8am to 9am)

[1] 2011 base year model

[2] Number of incompleted trips are those trips that start within the model period but do not arrive at their destination prior to the end of the model period.

[3] Unreleased vehicles are those unable to be released into the network due to congested network conditions

 Table 7.2:
 Option E Network Performance (PM Peak: 4pm to 5pm)

Statistic	Design Year					
Statistic	2011 ^[1]	2019	2029	2039	2049	
Number of Completed Trips	7,384	7,764	10,182	11,765	12,669	
Number of Incompleted Trips ^[2]	463	456	615	770	854	
Number of Unreleased Vehicles ^[3]	0	0	0	0	0	
Average Km per vehicle (km/veh)	3.0	2.8	3.0	3.0	3.1	
Average Travel Time per vehicle (min/veh)	4.3	3.5	3.8	3.9	4.2	
Average Speed (km/h)	41.5	48.6	47.6	46.3	44.5	
Number of Stops	20,144	15,507	25,773	34,283	45,278	
Vehicle-Kilometres Travelled (VKT)	22,984	22,930	31,780	37,090	41,366	
Vehicle Hours Travelled (VHT)	554	471	668	801	929	

[1] 2011 base year model

[2] Number of incompleted trips are those trips that start within the model period but do not arrive at their destination prior to the end of the model period.

[3] Unreleased vehicles are those unable to be released into the network due to congested network conditions

Statistic	Design Year					
Statistic	2011 [1]	2019	2029	2039	2049	
Number of Completed Trips	7315	7,870	9,914	11,632	12,485	
Number of Incompleted Trips ^[2]	496	420	609	849	954	
Number of Unreleased Vehicles ^[3]	0	0	0	0	0	
Average Km per vehicle (km/veh)	3.0	3.1	3.3	3.3	3.4	
Average Travel Time per vehicle (min/veh)	4.2	3.6	4.0	4.1	4.5	
Average Speed (km/h)	42.2	50.9	49.5	47.9	45.3	
Number of Stops	21,999	14,174	21,935	30,891	40,311	
Vehicle-Kilometres Travelled (VKT)	23,199	24,914	33,817	40,336	44,909	
Vehicle Hours Travelled (VHT)	550	489	683	842	992	

Table 7.2	Option A	Notwork	Performance	(^ ^ ^	Poak	9 am	to.	Qam)	
Tuble 7.5.	Oplion A	Network	renormance		reak.	oum	10	70M	1

[1] 2011 base year model

[2] Number of incompleted trips are those trips that start within the model period but do not arrive at their destination prior to the end of the model period.

[3] Unreleased vehicles are those unable to be released into the network due to congested network conditions

Table 7 1.	Option A Network Pe	rformanco (PM	Peak: (nm to 5nm)
	Ophon A Nerwork re		I Cuk, Apin 10 Spin)

Station .	Design Year					
Statistic	2011 ^[1]	2019	2029	2039	2049	
Number of Completed Trips	7,384	7,882	10,169	11,690	12,677	
Number of Incompleted Trips ^[2]	463	449	627	784	972	
Number of Unreleased Vehicles ^[3]	0	0	0	0	69	
Average Km per vehicle (km/veh)	3.0	2.8	3.0	3.1	3.2	
Average Travel Time per vehicle (min/veh)	4.3	3.5	3.8	4.1	5.1	
Average Speed (km/h)	41.5	48.1	47.2	44.7	37.2	
Number of Stops	20,144	15,666	24,801	35,972	56,972	
Vehicle-Kilometres Travelled (VKT)	22,984	23,034	31,760	37,430	42,111	
Vehicle Hours Travelled (VHT)	554	479	673	838	1133	

[1] 2011 base year model

[2] Number of incompleted trips are those trips that start within the model period but do not arrive at their destination prior to the end of the model period.

[3] Unreleased vehicles are those unable to be released into the network due to congested network conditions

Table 7.5:	Option	C Network Performan	ce (AM Peak: 8am to 9am)
------------	--------	----------------------------	--------------------------

Ci	Design Year				
Statistic	2011 [1]	2019	2029	2039	2049
Number of Completed Trips	7315	7,872	9,870	11,546	12,422
Number of Incompleted Trips ^[2]	496	432	603	888	1,094
Number of Unreleased Vehicles ^[3]	0	0	0	4	48
Average Km per vehicle (km/veh)	3.0	3.1	3.3	3.3	3.4
Average Travel Time per vehicle (min/veh)	4.2	3.6	3.9	4.1	4.8
Average Speed (km/h)	42.2	51.8	50.7	47.6	42.5
Number of Stops	21,999	12,742	19,739	28,082	43,761
Vehicle-Kilometres Travelled (VKT)	23,199	25,143	33,764	40,180	44,732
Vehicle Hours Travelled (VHT)	550	486	666	844	1,053

[1] 2011 base year model

[2] Number of incompleted trips are those trips that start within the model period but do not arrive at their destination prior to the end of the model period.

[3] Unreleased vehicles are those unable to be released into the network due to congested network conditions

Statistic	Design Year					
Signific	2011 [1]	2019	2029	2039	2049	
Number of Completed Trips	7,384	7,792	10,168	11,720	12,523	
Number of Incompleted Trips ^[2]	463	438	616	751	817	
Number of Unreleased Vehicles ^[3]	0	0	0	0	0	
Average Km per vehicle (km/veh)	3.0	2.8	3.0	3.1	3.2	
Average Travel Time per vehicle (min/veh)	4.3	3.5	3.7	3.9	4.0	
Average Speed (km/h)	41.5	49.2	48.5	48.0	47.6	
Number of Stops	20,144	12,777	20,810	27,555	32,890	
Vehicle-Kilometres Travelled (VKT)	22,984	22,969	32,087	37,708	41,692	
Vehicle Hours Travelled (VHT)	554	467	661	786	875	

Table 7.6: Option C Network Perform	ance (PM Peak: 4pm to 5pm)

[1] 2011 base year model

[2] Number of incompleted trips are those trips that start within the model period but do not arrive at their destination prior to the end of the model period.

[3] Unreleased vehicles are those unable to be released into the network due to congested network conditions

Table 7.7:	Option	11 Network Performan	ce (AM Peak: 8am to 9am)
------------	--------	----------------------	--------------------------

Clash-lia	Design Year					
Statistic	2011 ^[1]	2019	2029	2039	2049	
Number of Completed Trips	7315	7,835	9,937	11,502	12,320	
Number of Incompleted Trips ^[2]	496	402	601	903	1,141	
Number of Unreleased Vehicles ^[3]	0	0	0	25	0	
Average Km per vehicle (km/veh)	3.0	3.1	3.3	3.4	3.4	
Average Travel Time per vehicle (min/veh)	4.2	3.5	3.7	4.2	4.6	
Average Speed (km/h)	42.2	53.3	49.9	47.5	43.8	
Number of Stops	21,999	9,959	20,337	31,768	42,866	
Vehicle-Kilometres Travelled (VKT)	23,199	24,929	34,052	40,614	44,543	
Vehicle Hours Travelled (VHT)	550	468	683	855	1017	

[1] 2011 base year model

[2] Number of incompleted trips are those trips that start within the model period but do not arrive at their destination prior to the end of the model period.

[3] Unreleased vehicles are those unable to be released into the network due to congested network conditions

Table 7.8:	Option 11	Network	Performance	(PM	Peak:	4pm to	5pm)
------------	-----------	---------	-------------	-----	-------	--------	------

Statistic	Design Year							
Sidiisiic	2011 [1]	2019	2029	2039	2049			
Number of Completed Trips	7,384	7,857	10,102	11,588	12,353			
Number of Incompleted Trips ^[2]	463	428	763	1,032	1,182			
Number of Unreleased Vehicles ^[3]	0	0	52	20	110			
Average Km per vehicle (km/veh)	3.0	2.8	3.1	3.2	3.3			
Average Travel Time per vehicle (min/veh)	4.3	3.4	4.6	5.4	5.7			
Average Speed (km/h)	41.5	50.3	39.5	34.4	33.6			
Number of Stops	20,144	10,755	39,736	65,273	72,971			
Vehicle-Kilometres Travelled (VKT)	22,984	23,187	32,425	38,666	42,648			
Vehicle Hours Travelled (VHT)	554	461	821	1,125	1,271			

[1] 2011 base year model

[2] Number of incompleted trips are those trips that start within the model period but do not arrive at their destination prior to the end of the model period.

[3] Unreleased vehicles are those unable to be released into the network due to congested network conditions

Statistic	Design Year							
Signific	2011 [1]	2019	2029 2039 36 9,834 11,161 20 743 1,323 0 0 47 3.1 3.3 3.3 3.6 4.4 4.6 1.7 43.7 38.1 65 29,180 38,240 72 33,886 39,349	2049				
Number of Completed Trips	7315	7,836	9,834	11,161	11,723			
Number of Incompleted Trips ^[2]	496	420	743	1,323	1,462			
Number of Unreleased Vehicles ^[3]	0	0	0	47	358			
Average Km per vehicle (km/veh)	3.0	3.1	3.3	3.3	3.4			
Average Travel Time per vehicle (min/veh)	4.2	3.6	4.4	4.6	5.6			
Average Speed (km/h)	42.2	51.7	43.7	38.1	31.8			
Number of Stops	21,999	9,665	29,180	38,240	50,315			
Vehicle-Kilometres Travelled (VKT)	23,199	25,272	33,886	39,349	42,422			
Vehicle Hours Travelled (VHT)	550	489	776	1,033	1,335			

Table 7.9: Option 14 Network Performance (AM Peak: 8am to 9am)

[1] 2011 base year model

[2] Number of incompleted trips are those trips that start within the model period but do not arrive at their destination prior to the end of the model period.

[3] Unreleased vehicles are those unable to be released into the network due to congested network conditions

Table 7.10: Option 14 Network I	Performance (PM	Peak: 4pm to 5pm)
---------------------------------	-----------------	-------------------

Charlin II a	Design Year							
Statistic	2011 ^[1]	2019	2029	2039	2049			
Number of Completed Trips	7,384	7,826	10,218	11,335	12,081			
Number of Incompleted Trips ^[2]	463	434	926	1,334	1,555			
Number of Unreleased Vehicles ^[3]	0	0	49	251	568			
Average Km per vehicle (km/veh)	3.0	2.9	3.1	3.3	3.4			
Average Travel Time per vehicle (min/veh)	4.3	3.4	5.9	6.8	7.5			
Average Speed (km/h)	41.5	49.9	30.7	26.8	25.7			
Number of Stops	20,144	10,697	54,796	74,466	83,356			
Vehicle-Kilometres Travelled (VKT)	22,984	23,220	33,651	39,168	43,979			
Vehicle Hours Travelled (VHT)	554	466	1,095	1,460	1,711			

[1] 2011 base year model

[2] Number of incompleted trips are those trips that start within the model period but do not arrive at their destination prior to the end of the model period.

[3] Unreleased vehicles are those unable to be released into the network due to congested network conditions

Statistic	Design Year							
Sidiisiic	2011 [1]	2019	2029	2039	2049			
Number of Completed Trips	7315	7,919	9,705	11,134	11,535			
Number of Incompleted Trips ^[2]	496	405	771	1,293	1,555			
Number of Unreleased Vehicles ^[3]	0	0	0	8	496			
Average Km per vehicle (km/veh)	3.0	3.1	3.3	3.3	3.4			
Average Travel Time per vehicle (min/veh)	4.2	3.5	4.4	4.7	5.5			
Average Speed (km/h)	42.2	52.3	42.9	38.6	29.4			
Number of Stops	21,999	9,965	29,704	38,690	48,987			
Vehicle-Kilometres Travelled (VKT)	23,199	25,307	33,415	39,050	41,174			
Vehicle Hours Travelled (VHT)	550	484	779	1,011	1,401			

[1] 2011 base year model

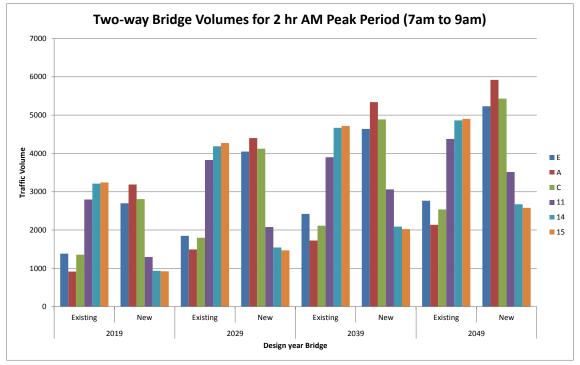
[2] Number of incompleted trips are those trips that start within the model period but do not arrive at their destination prior to the end of the model period.

[3] Unreleased vehicles are those unable to be released into the network due to congested network conditions

Stationia	Design Year							
Statistic	2011 [1]	2019	2019202920397,84810,16811,5224419501,19801111662.93.23.33.46.26.549.929.729.011,10158,96468,62923,35133,91139,937	2049				
Number of Completed Trips	7,384	7,848	10,168	11,522	12,324			
Number of Incompleted Trips ^[2]	463	441	950	1,198	1,379			
Number of Unreleased Vehicles ^[3]	0	0	111	166	255			
Average Km per vehicle (km/veh)	3.0	2.9	3.2	3.3	3.5			
Average Travel Time per vehicle (min/veh)	4.3	3.4	6.2	6.5	6.9			
Average Speed (km/h)	41.5	49.9	29.7	29.0	28.8			
Number of Stops	20,144	11,101	58,964	68,629	77,690			
Vehicle-Kilometres Travelled (VKT)	22,984	23,351	33,911	39,937	45,011			
Vehicle Hours Travelled (VHT)	554	468	1,141	1,377	1,564			

Table 7.12: Option 15 Network Performance (PM Peak: 4pm to 5pm)

[1] 2011 base year model


[2] Number of incompleted trips are those trips that start within the model period but do not arrive at their destination prior to the end of the model period.

[3] Unreleased vehicles are those unable to be released into the network due to congested network conditions

7.6 Peak Period Results Comparison

The volumes on the existing and new bridges during the AM and PM peak periods are presented in Figure 7.1 and Figure 7.2.

Figure 7.1: Bridge Utilisation (AM Peak)

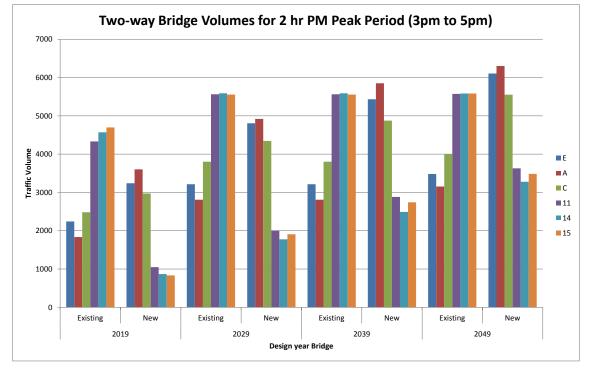


Figure 7.2: Bridge Utilisation (PM Peak)

Figure 7.1 and Figure 7.2 show that, during peak periods, traffic would use the new bridge in the upstream options (Options E, A and C) in preference to the existing bridge. However for the options that are further downstream (Options 11, 14 and 15) there is still a tendency for motorists to choose the existing bridge. This is most likely a result of the trip origins and destinations along with the delays experienced throughout the network. A high proportion of motorists are choosing to use the existing bridge as it is a more attractive route than the new bridge downstream which requires a longer travel distance. A full summary of the bridge volumes is provided in Appendix F.

In addition, a comparison of the average speeds, number of completed trips, vehicle-kilometres travelled (VKT) and total number of stops are shown graphically in Figure 7.3 to Figure 7.10.

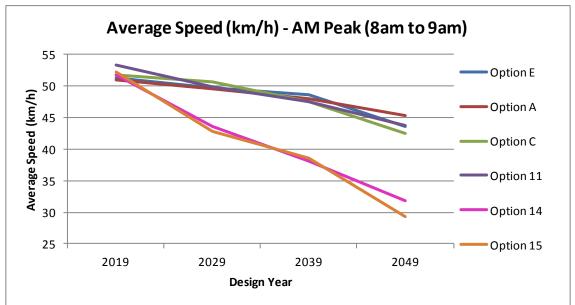
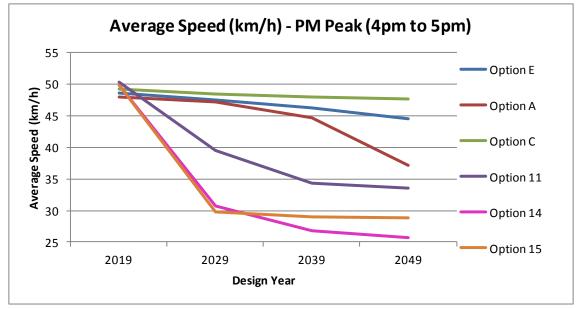



Figure 7.3: Average Vehicle Speed (AM Peak) - All Vehicles

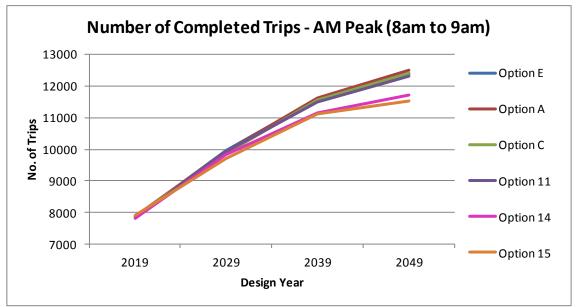
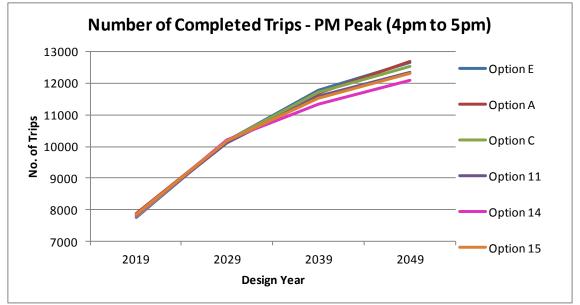



Figure 7.5: Number of Completed Trips (AM Peak) - All Vehicles

The results presented in Figure 7.3 to Figure 7.6 show that in 2019 all options operate at a similar level of performance in terms of average speed and the number of completed trips. As the design years approach 2049, the upstream options perform better than the downstream options in terms of both average speed and the number of completed trips. This is most notable during the PM peak, where Option 14 and Option 15 experience drops in average speed of up to 40% compared with their performance in 2019. Options A and 11 perform better than 14 and 15; however the best options in terms of average speeds are E and C.

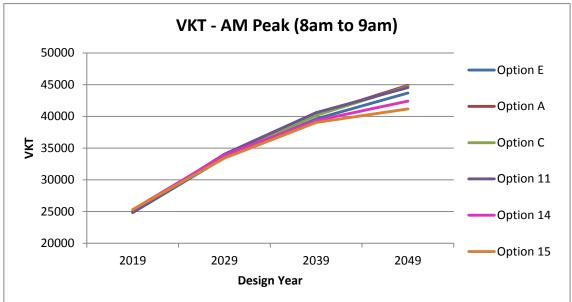
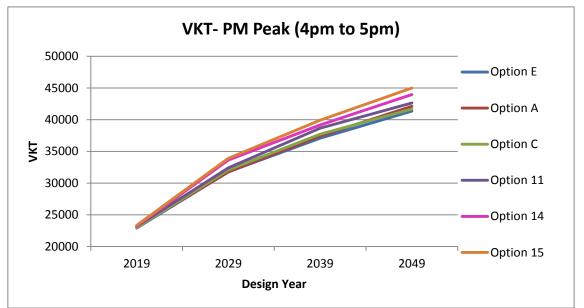



Figure 7.7: Vehicle-Kilometres Travelled (AM Peak) – All Vehicles

Figure 7.8: Vehicle-Kilometres Travelled (PM Peak) – All Vehicles

The vehicle-kilometres travelled (VKT) represents the total distance travelled by all vehicles within the simulated period. The PM peak results for Options 14 and 15 show higher VKTs than Option 11, which in turn are higher than Options C, A and E, as motorists travel further to use the new downstream bridge to avoid congestion in the vicinity of the existing bridge. During the AM peak period however, VKTs are lower for options 14 and 15 than the other options at 2049. This shows that for these options even though congestion increases in 2049, motorists still prefer to utilise the existing bridge.

The differences between the performance of Options 14 and 15 in 2049 in terms of VKT, between the AM and PM peak period is likely a result of less congestion (see bridge volumes and number of stops) in the AM when compared to the PM.

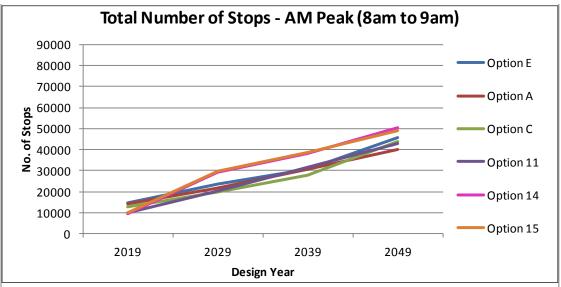
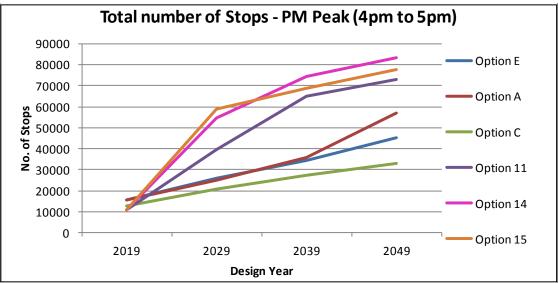
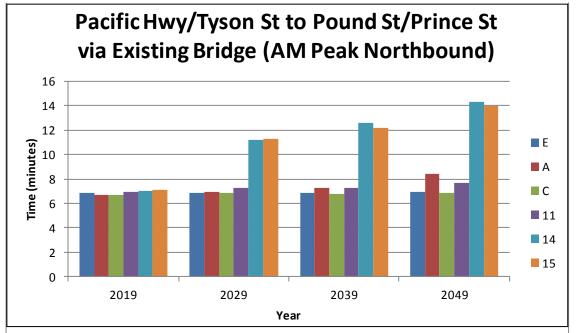



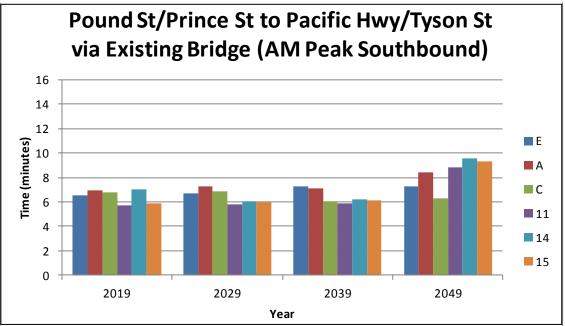
Figure 7.10: Total Number of Stops (PM Peak) – All Vehicles

The number of stops records when a vehicle travels from above 15 km/h to below 5 km/h, and is a good representation of the level of congestion across the network. It is clear that options 14 and 15 experience the highest levels of congestion on the network especially in later years as traffic volumes increase. The increasing number of stops for all options is representative of the increasing volume of traffic crossing the existing and new bridges during the simulation period.

7.7 Point to Point Travel Times


The point to point travel times for four bi-directional routes were recorded between the following locations:

- Pacific Highway / Tyson Street to Pound Street / Prince Street via the existing bridge
- Pacific Highway / Tyson Street to Summerland Way / Butterfactory Lane via proposed bridge
- Pacific Highway / Centenary Drive (North) to Pound Street / Prince Street via the existing bridge.
- Pound Street / Prince Street to Summerland Way / Butterfactory Lane


IS11352 Main Road 83, Summerland Way, Additional Crossing of the Clarence River, Grafton Technical Paper: Traffic Assessment, Route Options Development Report The route maps for the routes are provided in Appendix E.

A summary of the corresponding results for point to point travel times for the first two routes are presented graphically in Figures 7.11 to 7.18. Travel times for all routes are provided in Appendix E.

The travel times show that during the AM peak by 2049, Options 14 and 15 experience the highest travel times in both directions, particularly noticeable in the northbound direction which is more than double the options in the vicinity of the existing bridge. This is a clear indication that even though

IS11352 Main Road 83, Summerland Way, Additional Crossing of the Clarence River, Grafton Technical Paper: Traffic Assessment, Route Options Development Report network congestion occurs around the existing bridge, the new bridges are too far away to attract additional traffic.

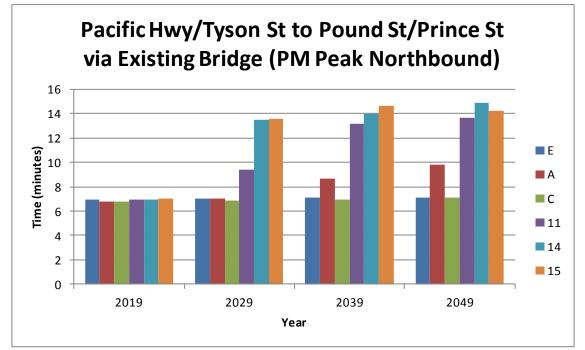
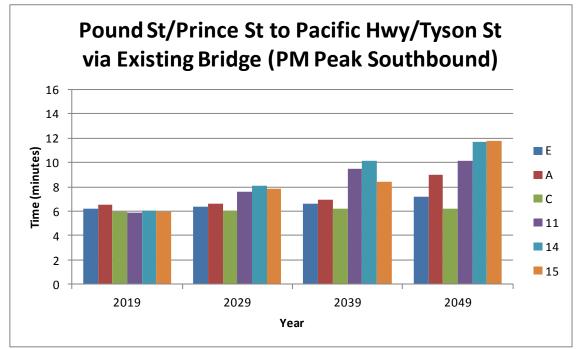
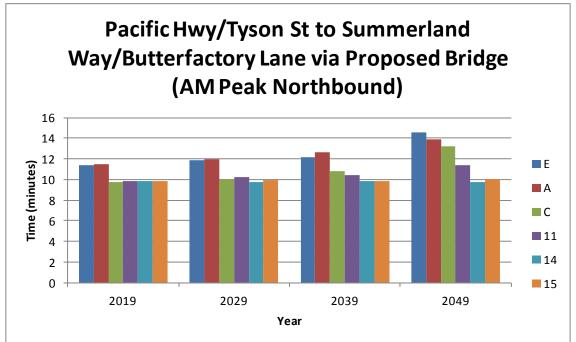
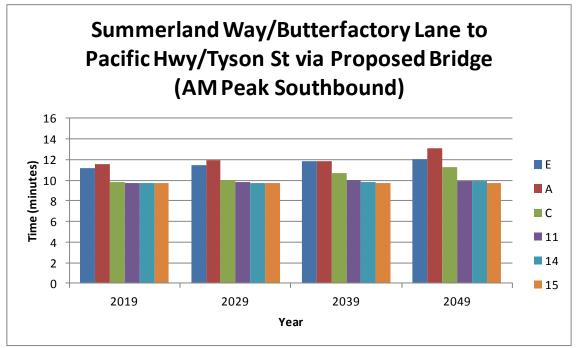



Figure 7.14: Pound Street / Prince Street to Pacific Highway / Tyson Street via Existing Bridge (PM Peak Southbound)


As with the AM peak, the PM peak travel times indicate that, by 2049 Options 14 and 15 experience the greatest travel times when compared to all other options. The travel times are significantly higher in the PM as a result of the constrained road network in both Grafton and South Grafton on the approach




to the existing bridge. As the congested conditions occur, the alternatives for re-routing reduce and longer queues form resulting in the higher travel times.

The PM peak travel times increase in later years more than the AM peak which is likely a result of the PM peak network having greater volumes and congestion.

IS11352

Main Road 83, Summerland Way, Additional Crossing of the Clarence River, Grafton Technical Paper: Traffic Assessment, Route Options Development Report

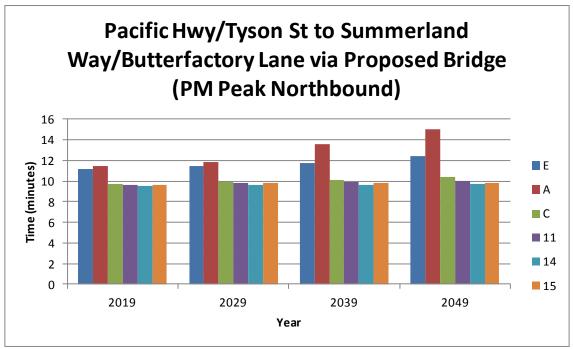
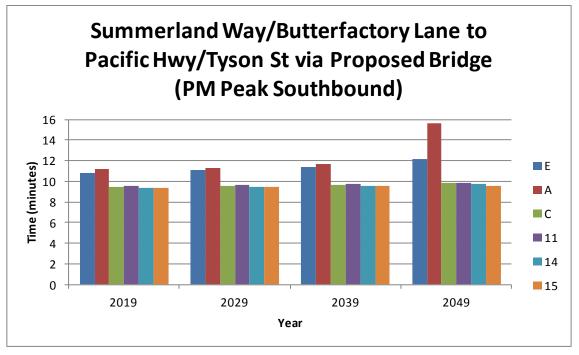



Figure 7.18: Summerland Way / Butterfactory Lane to Pacific Highway / Tyson Street via Proposed Bridge (PM Peak Southbound)

The travel times on the new bridges show that during both peak periods, the downstream options (Options 11, 14 and 15) experience the lowest travel times when compared to the options in the vicinity of the existing bridge. These are indicative of the congestion levels on the bridges, with the downstream options less congested. The bridges downstream are effectively operating as a bypass of Grafton.

The results also show that Option C also performs well, particularly in the PM peak.

8. Assessment of Route Options

8.1 Introduction

This chapter presents an assessment of the route options against a number of traffic indicators determined by the project team, which are summarised in Table 8.1. The information used to compare each option in the indicators has been obtained from the microsimulation model outputs. Each of the indicators and their outputs described in Table 8.1 are summarised in the following sub-sections.

Project objective	Supporting objective	Indicator	Unit
		Total time travelled by all vehicles across the modelled road network at the year of opening (2019) and at 20 years after opening (2039)	Million hours per year
Improve traffic	Provide efficient access for a second crossing of the Clarence	Total distance travelled by all vehicles across the modelled road network at the year of opening (2019) and at 20 years after opening (2039)	Million km per year
	River and for the State road network	Total time travelled by heavy vehicles across the modelled road network at the year of opening (2019) and at 20 years after opening (2039)	Million hours per year
and South Grafton		Total distance travelled by heavy vehicles across the modelled road network at the year of opening (2019) and at 20 years after opening (2039)	Million km per year
	Provide a traffic management network which reduces delays between Grafton and South Grafton in peak periods to an acceptable level of service for 30 years after opening	Average travel time between Grafton and South Grafton using the existing bridge, 30 years after opening (2049)	minutes
Support regional and local economic development	Provide for commercial transport including B-Doubles where required	Average travel time between the Pacific Highway and the Summerland Way using the new bridge, 30 years after opening (2049)	minutes
Minimise impact on the environment	Minimise the impact on residential amenity, including noise, vibration and air quality etc.	Estimated fuel consumption in urban areas during peak hours at 10 years after opening (2029). (Note that fuel consumption will be estimated in the RODR using data supplied in this report.)	Peak hour vehicle- kilometres travelled and peak hour vehicle- hours travelled (For peak hour fuel consumption estimates)

Table 8.1: Traffic Indicators for the Assessment of the Route Options

8.2 Indicator: Total Time Travelled By All Vehicles across the Road Network

8.2.1 Indicator Description

This indicator compares the total time travelled by all vehicles across the modelled road network for each of the route options. It is the time spent travelling by all vehicles measured in vehicle hours travelled (VHT). The VHT is a measure of the estimated total number of hours spent travelling by all

vehicles within the modelled network of Grafton and South Grafton. It includes all classes of light, medium and heavy vehicles.

The time spent travelling (VHT) for this indicator has been derived from the microsimulation traffic model for the years 2019 and 2039, representing the assumed year of opening and 20 years after opening.

The time spent travelling is the annual travel time for 2019 and 2039 across the modelled network.

Comparatively, options with a lower time travelled (VHT) indicate less time spent travelling on average and a more efficient road network. Benefits of a lower VHT include less congestion and commuting time, and improved accessibility to work and services.

8.2.2 Indicator Results

The results of the annual VHT for 2019 and 2039 are shown in Table 8.2.

		Option							
Indicator		"Do Minimum"	E	Α	С	11	14 1.89 3.32	15	
Time travelled by all vehicles	At the year of opening (2019) – million hours per year	2.37	1.91	1.97	1.89	1.85	1.89	1.88	
across the road network	20 years after opening (2039) – million hours per year	# 4.15	2.99	3.12	2.96	3.07	3.32	3.27	

Table 8.2: Total Time Travelled by All Vehicles across the Road Network (VHT)

Indicative "do minimum" case – refer to Section 5.4 for details.

The addition of a second river crossing creates additional road network capacity substantially reducing peak period delay in the network at 2019.

Total annual hours of travel for Options E, C, 11, 14 and 15 are within three per cent of each other in 2019. Option 11 has the lowest total travel time with the next best performing being Option 15. Option A has the highest total travel time, as all cross river traffic travels within the Bent Street/Craig Street/Fitzroy Street corridor. This extra traffic in the corridor creates the additional delay and therefore higher total travel time. Option 11 performs best as the option provides a convenient route to Grafton for traffic from Clarenza and the north, while attracting enough traffic away from the Bent Street Street corridor to improve overall network performance.

Traffic demand from the major new development areas of Clarenza and Waterview Heights become more pronounced on the network at 2039 and the relative performance of each option alters compared to 2019.

At 2039 Option C is the best performing option followed by Option E. Both Option E and Option C perform better than Option A at reducing traffic in the Bent Street/Craig Street/Fitzroy Street corridor, reducing delays and total travel times. One reason is that Options E and C provide the most direct routes for traffic from Waterview Heights and Clarenza respectively to connect to the central area of Grafton, attracting traffic away from the existing bridge. By 2039, Option 11 is no longer the best performing option. Traffic demand on the existing bridge corridor is higher for Option 11 than for Option C or Option E, resulting in lower network performance.

Options 14 and 15 have the highest total travel times and do not perform as well. The options do not attract enough traffic to the new bridge during either the peak hours or off peak hours and are less effective at reducing delay in the Bent Street/Craig Street/Fitzroy Street corridor. The result is higher overall travel times.

8.3 Indicator: Total Distance Travelled By All Vehicles across the Road Network

8.3.1 Indicator Description

This indicator compares the total distance travelled by all vehicles across the modelled road network for each of the route options. It is the distance travelled by all vehicles measured in vehicle-kilometres travelled (VKT). The VKT is a measure of the estimated total number of kilometres travelled by all vehicles within the modelled network of Grafton and South Grafton. It includes all classes of light, medium and heavy vehicles.

The distance travelled is derived from the microsimulation traffic model for the years 2019 and 2039, representing the assumed year of opening and 20 years after opening.

The distances travelled are annual distances travelled for 2019 and 2039 across the modelled network.

Comparatively, options with a lower distance travelled (VKT) indicate less distance travelled on average and a more efficient road network.

8.3.2 Indicator Results

The results for the annual VKT are shown in Table 8.3.

Indicator		Option								
		"Do Minimum	Е	А	С	11	14	15		
Distance travelled by all	At the year of opening (2019) – million km per year	95.56"	94.63	95.75	95.14	95.14	96.18	95.95		
vehicles across the road network	20 years after opening (2039) – million km per year	# 148.13	145.85	148.32	146.88	147.56	148.91	148.89		

Table 8.3: Total Distance Travelled by All Vehicles across the Road Network (VKT)

Indicative "do minimum" case – refer to Section 5.4 for details.

Option E performs the best as it offers the shortest route between South Grafton and Grafton in both 2019 and 2039.

Options C and 11 are the next best options at 2019 with total distance travelled being equal. By 2039, Option C is performing slightly better than Option 11. Option C has better road network capacity on the Grafton side, particularly along the Pound Street corridor, whereas traffic in Option 11 must use less direct routes to access the central area of Grafton. Option 11 does not reduce traffic on the existing bridge to the same extent as Option C. The delay associated with the Bent Street/Craig Street/Fitzroy Street corridor is higher for Option 11 which encourages some drivers to choose to travel further, using the new bridge, to avoid this delay.

Option 14 has the highest total distance travelled in 2019 and in 2039, marginally more than Option 15. Both options are least effective in reducing traffic on the existing bridge. These options are not effective at reducing delay in the Bent Street/Craig Street/Fitzroy Street corridor. The delay associated with the existing bridge and the 100 km/h posted speed limit on the Pacific Highway encourages some traffic to make the longer journey over the new bridge. As a result total travel distance is higher for Options 14 and 15 than for the other options.

8.4 Indicator: Total Time Travelled by Heavy Vehicles across the Road Network

8.4.1 Indicator Description

This indicator compares the total time travelled by heavy vehicles across the modelled road network for each of the route options. It is the time spent travelling by heavy vehicles measured in vehicle hours travelled (VHT). The VHT is a measure of the estimated total number of hours spent travelling by heavy vehicles within the modelled network of Grafton and South Grafton. It includes all buses, trucks, articulated vehicles and B-Doubles but excludes light commercial vehicles.

The time spent travelling (VHT) for this indicator has been derived from the microsimulation traffic model for the years 2019 and 2039, representing the assumed year of opening and 20 years after opening.

The time spent travelling is the annual travel time for 2019 and 2039 across the modelled network.

Comparatively, options with a lower time travelled (VHT) indicate less time spent travelling on average and a more efficient road network for heavy vehicles. Benefits of a lower VHT would include less congestion, which would be expected to result in lower transport costs and improved accessibility for deliveries.

8.4.2 Indicator Results

The results for the heavy vehicle travel times are shown in Table 8.4.

			Option							
Indicator		"Do Minimum"	E	A	С	11	14	15		
Time travelled by heavy	At the year of opening (2019) – million hours per year	0.040	0.035	0.034	0.033	0.032	0.035	0.033		
vehicles across the road network	20 years after opening (2039) – million hours per year	# 0.070	0.053	0.052	0.050	0.049	0.055	0.053		

Table 8.4: Total Time Travelled by Heavy Vehicles across the Road Network (VHT)

Indicative "do minimum" case - refer to Section 5.4 for details.

The addition of a second river crossing creates additional road network capacity substantially reducing peak period delay for heavy vehicles in the network at 2019. However the performance of the options for heavy vehicles differs to that of all vehicles because the larger heavy vehicles are obliged to use the new bridge.

In 2019 the total annual hours of heavy vehicle travel would be lowest for Option 11 which provides good overall access for heavy vehicles at this time. Options A, C and 15 are the next best performing in 2019, with Options E and 14 the worst performing.

By 2039 the relativities change as traffic grows. Option 11 is still the best performing option but is closely followed by Option C. Options E, A and 15 are a little worse, with Option 14 having the highest heavy vehicle travel time. For Option 14, increasing congestion around the central areas of Grafton and South Grafton is increasing the travel time for heavy vehicles accessing these areas.

8.5 Indicator: Total Distance Travelled by Heavy Vehicles across the Road Network

8.5.1 Indicator Description

This indicator compares the total distance travelled by heavy vehicles across the modelled road network for each of the route options. It is the distance travelled by heavy vehicles measured in vehiclekilometres travelled (VKT). The VKT is a measure of the estimated total number of kilometres travelled by heavy vehicles within the modelled network of Grafton and South Grafton. It includes all buses, trucks, articulated vehicles and B-Doubles but excludes light commercial vehicles.

The distance travelled is derived from the microsimulation traffic model for the years 2019 and 2039, representing the assumed year of opening and 20 years after opening.

The distances travelled are annual distances travelled for 2019 and 2039 across the modelled network.

Comparatively, options with a lower distance travelled (VKT) indicate less distance travelled on average by heavy vehicles resulting in a more efficient road network and lower transport costs.

8.5.2 Indicator Results

The results for the heavy vehicle travel distance are shown in Table 8.5.

Indicator		Option								
		"Do Minimum"	E	A	C	11	14	15		
Distance travelled by heavy vehicles across the road network	At the year of opening (2019) – million km per year	1.86	1.83	1.79	1.77	1.73	1.92	1.82		
	20 years after opening (2039) – million km per year	# 2.89	2.73	2.71	2.62	2.61	2.87	2.75		

Table 8.5: Total Distance Travelled by Heavy Vehicles across the Road Network (VKT)

Indicative "do minimum" case – refer to Section 5.4 for details.

In terms of distance travelled by heavy vehicles, rather than distance travelled by all vehicles, Option E is no longer the most efficient network. Option 11 provides the most efficient network in 2019, followed by Options C and A. Options E and 15 are the next best with Option 14 having appreciably greater heavy vehicle travel distances. By 2039, Option 11 still has the lowest heavy vehicle travel distances, closely followed by Option C. Options A, E and 15 are the next best, with Option 14 again having the highest heavy vehicle travel distance.

8.6 Indicator: Average Travel Time between Grafton and South Grafton Using the Existing Bridge

8.6.1 Indicator Description

This indicator compares the average travel time between Grafton and South Grafton using the existing bridge for each of the route options. The average travel time between Grafton and South Grafton using the existing Grafton Bridge has been estimated for each option in the year 2049 as an indicator of the reduction in delays for vehicles using the existing bridge.

The travel times are measured between the intersection of Pacific Highway / Tyson Street in South Grafton, and the intersection of Prince Street / Pound Street (clock tower) in Grafton, using the existing bridge. The times have been derived from the microsimulation traffic model for the morning (AM) peak period (8-9am) in the northbound direction and the afternoon (PM) peak period (4-5pm) in the southbound direction in 2049.

The average travel time is reported in minutes.

Comparatively, the higher the travel time, the greater the congestion experienced on the existing bridge, for that option.

8.6.2 Indicator Results

The results for the travel times in 2049 are shown in Table 8.6.

Table 8.6: Average Travel Time between Grafton and South Grafton using the Existing Bridge
--

Indicator		Option							
		E	Α	С	11	14	15		
Average travel time between Grafton (Prince St / Pound St) and South Grafton	Morning (AM) peak period (minutes) – Northbound	7	8	7	8	14	14		
(Pacific Hwy / Tyson St) using the existing bridge, 30 years after opening	Afternoon (PM) peak period (minutes) - Southbound	7	9	6	10	12	12		

Options E and C would result in the shortest travel times in 2049 during the morning 8-9am (northbound) and afternoon 4-5pm (southbound) peaks between the intersection of Pacific Highway / Tyson Street in South Grafton and the intersection of Prince Street / Pound Street (clock tower) in Grafton. They are the best performing options as they provide convenient alternative routes between South Grafton and Grafton. They attract more traffic away from the existing bridge and allow higher travel speeds in the Bent Street / Craig Street / Fitzroy Street corridor. Option C performs a little better than Option E in the afternoon peak because it separates traffic at both the southern and northern ends of the bridge reducing the conflicts between various movements and reducing the overall delay, particularly at the Fitzroy Street / Villiers Street intersection.

Option 14 and Option 15 perform in a similar manner and are least successful in reducing delay in the Bent Street / Craig Street / Fitzroy Street corridor as the options attract less traffic away from the existing bridge.

8.7 Indicator: Average Travel Time between the Pacific Highway and the Summerland Way

8.7.1 Indicator Description

This indicator compares the average travel time for heavy vehicles between the Pacific Highway and the Summerland Way for each of the route options.

The travel times are between the intersection of the Pacific Highway and Tyson Street, South Grafton, and the intersection of Summerland Way and Butterfactory Lane, Grafton using the new bridge in 2049. The times have been derived from the microsimulation traffic model for the morning (AM) peak period (8-9am) in the northbound direction and the afternoon (PM) peak period (4-5pm) in the southbound direction in 2049.

The average travel time is reported in minutes.

Comparatively, the higher the travel times the less efficient the route option is considered to be for heavy vehicles travelling through Grafton.

8.7.2 Indicator Results

The results of the travel times in 2049 are shown in Table 8.7.

Table 8.7: Average travel time between the Pacific Highway and the Summerland Way via New Bridge

Indicator		Option							
		E	А	С	11	14	15		
Average travel time between the Pacific Highway and the	Morning (AM) peak period (minutes) – Northbound	15	14	13	11	10	10		
Summerland Way, 30 years after opening (2049)	Afternoon (PM) peak period (minutes) - Southbound	12	16	10	10	10	10		

Options 14 and 15 would result in the shortest travel times in 2049 during the morning 8-9am (northbound) and afternoon 4-5pm (southbound) peaks between the intersection of the Pacific Highway / Tyson Street in South Grafton and the intersection of Summerland Way / Butterfactory Lane in Grafton. The lower traffic levels and higher speed limits on the Pacific Highway assist in reducing the travel times for Options 14 and 15. Option E is has the highest travel time in the AM peak and Option A in the PM peak. Both options require through traffic to travel through central area key intersections where the delays are higher and add to the time required to complete the trip.

8.8 Indicator: Estimated Fuel Consumption at 10 years After Opening (for year 2029)

8.8.1 Indicator Description

This is an indicator of the impact on the air quality in Grafton urban areas.

Fuel consumption during peak hours will be estimated in the RODR as an indicator of the impact of each option on the air quality of Grafton urban areas. The indicator focuses on sections of the road that are urbanised (i.e. developed) only, as these are the areas where air quality sensitive receivers are located (eg houses, schools, hospitals, child care centres, aged care centres, etc).

The modelling results from this report will be used to derive the average speed in urban areas achieved by each of the route options during the AM and PM peak periods at year 2029, and these speeds together with the distances travelled by the different classes of vehicles in the peak hours will then be used in the RODR to estimate the total fuel usage for each option.

The amount of fuel consumed per option is proportional to the amount of contaminants emitted by vehicles to the atmosphere and therefore is considered a good indicator for air quality impacts.

The greater the amount of fuel consumed, the greater the air quality impact of the route option on urban areas.

8.8.2 Indicator Results

The results of the distances and time travelled in urban areas in 2029 are shown in Table 8.8.

Indicator		Option							
		E	Α	С	11	14	15		
Travel by all vehicles in urban areas in the in 2029 (10 years after opening	Distance travelled by all vehicles in urban areas in the AM and PM peak periods (km travelled)	46,700	46,990	46,590	46,430	44,600	43,400		
	Time travelled by all vehicles in urban areas in the AM and PM peak periods (hours of travel)	1,040	1,050	1,020	1,160	1,440	1,460		

Table 8.8: Results of the Indicator for Calculation of Peak Hour Fuel Usage

Total travel times and distances travelled in urban areas during the 8-9am morning and 4-5pm afternoon peak hours have been estimated as an indicator of likely fuel consumption and hence relative air quality impacts. Options with higher fuel consumption are likely to have poorer relative air quality.

Options C, E and A reduce road network delay better than the downstream options and have comparatively low total travel times in urban areas during peak hours. These options would be likely to have the lowest fuel consumption in urban areas.

Options 14 and 15 would be likely to have the highest fuel consumption. These options do not reduce delays in the Bent Street / Craig Street / Fitzroy Street corridor to the same extent as the other options, resulting in lower speeds, higher total travel times and higher fuel consumption in urban areas.

Fuel consumption estimates for all options are reported in the RODR.

Appendix A

Appendix A

Calibration and Validation Report

Main Road 83 Summerland Way Additional Crossing of the Clarence River, Grafton Route Options Design Report Microsimulation Calibration and Validation Report

transportation planning, design and delivery

Main Road 83 Summerland Way

Additional Crossing of the Clarence River, Grafton, Route Options Design Report

Microsimulation Calibration and Validation Report

Issue: D 26/07/12

Client: Roads and Maritime Services, NSW Reference: IS11352 GTA Consultants Office: NSW

Quality	Record
---------	--------

-					
Issue	Date	Description	Prepared By	Checked By	Approved By
A	25/05/12	Final	Bryan Li / Matthew Petherick	Reece Humphreys	RH
В	14/06/12	Final	Bryan Li / Matthew Petherick	Reece Humphreys	RH
С	3/07/12	Final	Bryan Li / Matthew Petherick	Reece Humphreys	RH
D	26/07/12	Final	Bryan Li / Matthew Petherick	Reece Humphreys	Alph

© GTA Consultants (GTA Consultants (NSW) Pty Ltd) 2011 The information contained in this document is confidential and intended solely for the use of the client for the purpose for which it has been prepared and no representation is made or is to be implied as being made to any third party. Use or copying of this document in whole or in part without the written permission of GTA Consultants constitutes an infringement of copyright. The intellectual property contained in this document remains the property of GTA Consultants.

MELBOURNE • SYDNEY • BRISBANE • CANBERRA ADELAIDE • GOLD COAST • TOWNSVILLE www.gta.com.au

Table of Contents

1.	Intro	oduction	1
	1.1	Background	1
	1.2	Study Area	1
2.	Mo	del Specification	3
	2.1	Software	3
	2.2	Network Coverage	3
	2.3	Temporal Coverage	3
3.	Net	work Build	4
	3.1	Overlay	4
	3.2	Configuration	4
	3.3	Nodes	4
	3.4	Links	4
	3.5	Kerbs and Stoplines	4
	3.6	Junctions	4
	3.7	Nextlane Rules	4
	3.8	Lane Choice Rules	5
	3.9	Route Choice Rules	5
4.	Mo	delling Details and Assumptions	6
5.	Mo	del Stability	7
	5.1	Seed Run Comparison for Network Vehicles (NV)	7
	5.2	Vehicle Kilometres Travelled (VKT)	8
	5.3	Vehicles Hours Travelled (VHT)	9
6.	Cal	ibration and Validation	10
	6.1	Calibration and Validation Guidelines	10
	6.2	Turning Movements Calibration Results	10
	6.3	Travel Time Validation Results	11
	6.4	Queue Length Validation Results	12
7.	Cor	nclusion	14

Attachments

- A: Turn Flow Comparison Results
- Travel Time Comparison Results B:

Figures

Figure 1.1:	Microsimulation Model Extents	2
Figure 5.1:	Comparison of Seed Runs for Network Vehicles (NV) - AM Peak	7
Figure 5.2:	Comparison of Seed Runs for Network Vehicles (NV) - PM Peak	7
Figure 5.3:	Vehicles Kilometres Travelled (VKT) - AM Peak	8
Figure 5.4:	Vehicles Kilometres Travelled (VKT) - PM Peak	8
Figure 5.5:	Vehicles Hours Travelled (VHT) - AM Peak	9
Figure 5.6:	Vehicles Hours Travelled (VHT) - PM Peak	9
Figure 6.1:	AM Peak Queue Length Comparison	13
Figure 6.2:	PM Peak Queue Length Comparison	13

Tables

Table 6.1:	Microsimulation Modelling Calibration and Validation Criteria	10
Table 6.2:	AM Peak Period Calibration Summary	11
Table 6.3:	PM Peak Period Calibration Summary	11
Table 6.4:	AM Travel Time Summary	12
Table 6.5:	PM Travel Time Summary	12

1. Introduction

1.1 Background

GTA Consultants (GTA) was commissioned by ARUP on behalf of the Roads and Maritime Services, NSW (RMS) for the development of a Q-Paramics model of Grafton and South Grafton, in Northern NSW. As part of the project the existing road network was constructed with an aim of representing the existing traffic conditions.

The report discusses the calibration and validation of the Q-Paramics model, to confirm its 'fitness for purpose' as a basis for future options testing to be undertaken as part of this assignment.

1.2 Study Area

The model area is located within Grafton in northern New South Wales and includes the town centres of Grafton and South Grafton and the existing bridge crossing of the Clarence River. The study area includes the major roads of Summerland Way, Fitzroy Street, Prince Street, Villiers Street, Dobie Street, Bent Street, Gwydir Highway and the Pacific Highway and includes the following key intersections:

- Fitzroy Street / Prince Street
- Prince Street / Pound Street
- Fitzroy Street / Villiers Street
- Pound Street / Villiers Street
- Bent Street / Through Street
- Bent Street / Ryan Street (Gwydir Highway)
- Pacific Highway / Gwydir Highway.

The Q-Paramics model includes all intersecting roads within the area and is shown in Figure 1.1 below.

26/07/12

Introduction

Figure 1.1: Microsimulation Model Extents

The model was constructed with the use of aerial photography enabling the physical road geometry, lane and line-marking, to be matched to the existing layout.

Existing conditions information and traffic volume data was based on comprehensive surveys and site observations undertaken throughout the study area and supplemented with additional data sourced from RMS and previous studies. The manual turning movements, automatic tube counts and origin-destination surveys were undertaken at key locations and intersections for matrix estimation process.

The model has been calibrated and validated in accordance with the criteria set out in the 'UK Design Manual for Roads and Bridges (Vol 12, Section 2, Part 1 – Traffic Appraisal in Urban Areas)'.

The purpose of the modelling is to represent the existing operation of the network. This will then provide an accurate base for which to test the impact of various scenarios.

2. Model Specification

2.1 Software

The model was built using version 6.7.2 of Q-Paramics. To supplement the Q-Paramics core, the Lane Choice and Route Choice Azalient plug-ins were used.

2.2 Network Coverage

The brief was to build a model of Grafton in northern New South Wales which includes the town centres of Grafton and South Grafton and the existing bridge crossing of the Clarence River. The modelled area includes Summerland Way, Fitzroy Street, Prince Street, Villiers Street, Dobie Street, Bent Street, Gwydir Highway and the Pacific Highway.

2.3 Temporal Coverage

The base model covers AM and PM peak hour periods augmented by warm up and cool down periods as follows:

AM Peak Period

- 6:30am to 7:00am (AM warm up period)
- 7:00am to 8:00am (first AM peak hour)
- 8:00am to 9:00am (second AM peak hour)
- 9:00am to 10:00am (third AM peak hour)
- 10:00am to 10:30am (AM cool down period)

PM Peak Period

- 2:30pm to 3:00pm (PM warm up period)
- 3:oopm to 4:oopm (first PM peak hour)
- 4:00pm to 5:00pm (second PM peak hour)
- 5:00pm to 6:00pm (third PM peak hour)
- 6:00pm to 7:00pm (PM cool down period)

Thirty minute warm up periods were considered appropriate to pre-load the network before the peak hours.

3. Network Build

3.1 Overlay

The aerial photograph overlay was imported into the Q-Paramics model as a starting point at 94 Lambert projection. This base aerial photo, representing the whole modelled area, was under low scale and the road geometry, lane and line-marking were not clearly visible. Therefore, a series of smaller scaled aerial photographs were imported in the model and scaled to the base aerial photograph and checked to ensure all the scales were correct.

3.2 Configuration

The RMS standard configuration file was used. No changes were made to the RMS standard. The RMS's standard five seeds were also used to generate model outputs for validation.

3.3 Nodes

Nodes were input into the model at all key intersections and geometric locations.

Zone connectors were coded at model entry points where it is appropriate the vehicles enter the network at speed.

3.4 Links

Link geometry, lanes and restrictions were coded on the basis of the aerial photograph.

Link speeds were coded to sign-posted speed limits and link categories defined using the RMS standard categories file.

3.5 Kerbs and Stoplines

The aerial photograph overlay was used as the basis for the positioning of kerbs and stoplines. Adjustments were made to ensure realistic progression of vehicles between links.

3.6 Junctions

There are a number of priority junctions in the network. Priority junctions within the network were coded using the default Q-Paramics priority – 'minor', 'medium' and 'major' hierarchy. All U-turns in the model were barred.

3.7 Nextlane Rules

Nextlanes were applied in various locations throughout the network to achieve appropriate lane changing behaviour.

3.8 Lane Choice Rules

The lane choice plug-in was used throughout the network as a supplement to the limited functionality of signposting in the Q-Paramics core.

3.9 Route Choice Rules

The route choice plug-in was used specifically at roundabouts to control which routes vehicles use by specifying which exit vehicles must use when approaching an intersection.

4. Modelling Details and Assumptions

The following assumptions were made with regard to the development and calibration of the model.

- The speed on the southbound and northbound approaches to the bridge has been reduced in the model to reflect the road geometry and existing conditions at these locations.
- Speeds at the approaches to the roundabouts within the study area were marginally decreased to more realistically represent observed traffic conditions.
- A number of route choices were applied to reflect the results of traffic surveys and site observations.
- Heavy Goods Vehicles (HGV) and B-Double vehicles were restricted from travelling on residential streets. In addition, B-doubles were only permitted to travel on Pacific Highway, Bent Street, Fitzroy Street and Villiers Street.
- Lower end speed factors were applied on links with unsignalised pedestrian crossings in the town centre.
- Zone release percentages were applied to zones representing major activity centres reflecting traffic surveys and site observations.
- A number of bus routes currently operate within the study area and were included in the base model. The locations of all bus stops were input into the models and the arrival and departure times were based on the current bus time table.

Model Stability 5.

A full summary of the turn counts and link counts are provided in Attachment A of this report.

Seed values of 28, 560, 2849, 7771 and 86524 were used to test the stability and sensitivity of the model. The following graph shows a comparison of the network vehicles within the model for each seed run. The following graphs show an acceptable range of sensitivity with similar peaks over the time period indicating that the model is robust in both the AM and PM Peak periods.

5.1 Seed Run Comparison for Network Vehicles (NV)

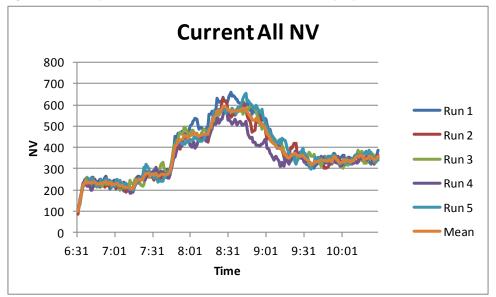
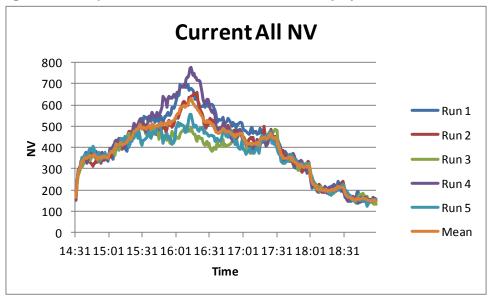



Figure 5.1: Comparison of Seed Runs for Network Vehicles (NV) - AM Peak

Figure 5.2: Comparison of Seed Runs for Network Vehicles (NV) - PM Peak

5.2 Vehicle Kilometres Travelled (VKT)

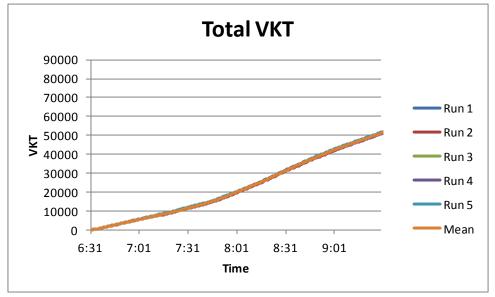
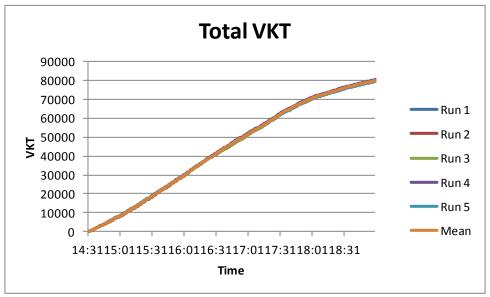



Figure 5.3: Vehicles Kilometres Travelled (VKT) - AM Peak

Figure 5.4: Vehicles Kilometres Travelled (VKT) - PM Peak

5.3 Vehicles Hours Travelled (VHT)

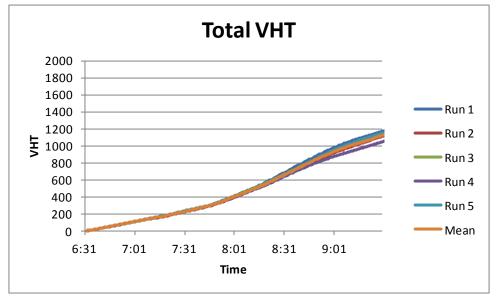
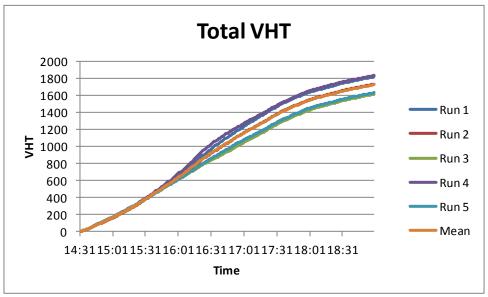



Figure 5.5: Vehicles Hours Travelled (VHT) - AM Peak

Figure 5.6: Vehicles Hours Travelled (VHT) - PM Peak

26/07/12

6. Calibration and Validation

6.1 Calibration and Validation Guidelines

The aim of the microsimulation models is to obtain the best possible match between the model results and the field measurements. The calibration and validation process was carried out in accordance with the criteria set out in the 'UK Design Manual for Roads and Bridges (Vol 12, Section 2, Part 1 – Traffic Appraisal in Urban Areas)'.

The targets set out in the guidelines are shown in Table 6.1.

Criteria and Measurements	Calibration Acceptable Targets
Hourly Flows, Modelled Versus Observed	
Individual Link Flows	
Within 15%, for 700 veh/h < Flow < 2700 veh/h	> 85% of cases
Within 100 veh/h, for Flow < 700 veh/h	> 85% of cases
Sum of All Link Flows	Within 5% of sum of all link counts
GEH Statistic < 5 for Individual Link Flows	> 85% of cases
Travel Times, Model Versus Observed	
Journey Times Within 15% (or 1 min, if higher)	> 85% of cases
Visual Audits	
Visually Acceptable Speed-Flow Relationship	To analyst's satisfaction
Visually Acceptable Queuing	To analyst's satisfaction

Table 6.1: Microsimulation Modelling Calibration and Validation Criteria

Source: 'UK Design Manual for Roads and Bridges (Vol 12, Section 2, Part 1 - Traffic Appraisal in Urban Areas)'

The hourly flow criteria set out in Table 6.1 were utilised to calibrate the model, whilst queuing and visual audits were used to validate the model.

6.2 Turning Movements Calibration Results

Tables 6.2 and 6.3 show the results obtained from the comparison of turn flows for both the AM and PM peak periods in relation to GEH Requirement.

The GEH statistic is a standard measure of the 'goodness of fit' between observed and modelled flows. Unlike comparing percentage difference the GEH statistic places more emphasis on larger flows rather than on small flows.

The GEH statistic is defined as follows:

$$GEH = \sqrt{\frac{(M-C)^2}{(M+C)/2}}$$

where M and C are the modelled and observed flows respectively.

A smaller GEH value illustrates better fit and the Q-Paramics model of the existing situation will aim for all GEH values less than 5.

The GEH statistic is designed to measure one hour flows and as such, it is applied to hourly flows within the model. A GEH greater than 10 indicates no correlation between the observed and modelled data. A GEH between 5 and 10 indicates an acceptable match for modelling purposes, and a GEH below 5 indicates a good correlation. Tables 6.2 and 6.3 summarise the AM and PM calibration results.

Total Average	100%	98 %	88%	Yes (5%)
8:00 - 9:00	100%	99%	88%	Yes (0%)
7:00 - 8:00	100%	97%	88%	No (10%)
Target	>85%	>85%	>85%	within 5%
Criteria UK Design Manual for Roads and Bridges	Wiłhin 15% for 700 veh/h < Flow < 2700 veh/h	Within 100 veh/h, for Flow < 700 veh/h	GEH less than 5	Sum of all link flows

Table 6.2: AM Peak Period Calibration Summary

 Table 6.3:
 PM Peak Period Calibration Summary

		-	1	1
Criteria UK Design Manual for Roads and Bridges	Within 15% for 700 veh/h < Flow < 2700 veh/h	Within 100 veh/h, for Flow < 700 veh/h	GEH less than 5	Sum of all link flows
Target	>85%	>85%	>85%	within 5%
3:00 - 4:00	100%	96%	85%	Yes (3%)
4:00 - 5:00	100%	97%	87%	Yes (1%)
Total Average	100%	97%	86%	Yes (2%)

Table 6.2 and Table 6.3 indicate that the AM and PM models generally meet the UK Design Manual for Roads and Bridges (Vol 12, Section 2, Part 1 – Traffic Appraisal in Urban Areas) and GEH turning movement criterion.

It is noted that there are minor discrepancies in the calibration results, such as the average sum of all link flows not within the required 5% bracket during the AM peak hour of 7am to 8am. Review of the results indicate that the actual modelled sum of link flows is higher than the observed, which means that the model has more traffic than what has been observed. However, whilst this discrepancy is outside the respective requirements, it is considered to have little or no impact on the model outcome. In addition, the AM peak hour of 8am to 9am, which meets all model requirements, is considered to be more critical than 7am to 8am during the AM peak and will be used for reporting and analysis throughout this study.

Full details of the turn flows comparisons are included in Attachment A.

6.3 Travel Time Validation Results

Travel times along the route were recorded for each of the AM and PM peak periods and compared with data extracted from the model. 85% of the Q-Paramics values should be within 15% of the observed values. Because the travel times vary greatly in the real world, a sufficient number of on-site observations were made and average travel times were calculated for the main sections within the study area. For the purposes of the study, the following travel time routes were recorded:

<u>AM Peak</u>

 Northbound – between Gwydir Highway / Bent Street roundabout and Fitzroy Street / Villiers Street roundabout vi Bent Street and Fitzroy Street

 IS11352
 26/07/12

 Main Road 83 Summerland Way, Additional Crossing of the Clarence River, Grafton, Route Options Design Report
 Issue: D

 Microsimulation Calibration and Validation Report
 Page 11

26/07/12

 Southbound – between Fitzroy Street / Villiers Street roundabout and Gwydir Highway / Bent St roundabout via Fitzroy Street and Bent Street.

<u>PM Peak</u>

- Northbound between Gwydir Highway / Bent Street roundabout and Fitzroy Street / Villiers Street roundabout. Via Bent Street and Fitzroy Street
- Southbound between Fitzroy Street / Prince Street roundabout and Bent Street / Through Street roundabout via Fitzroy Street and Bent Street.

Tables 6.4 and 6.5 summarise the observed and modelled average travel time for both northbound and southbound traffic during the AM and PM peak periods.

Table 6.4: AM Travel Time Summary

	AM Peak Hour (8:00am to 9:00am)											
Direction	Average Observed (s)	Modelled Average (s)	Difference (seconds)	% Difference								
Northbound (Gwydir Hwy to Villiers St)	355	397	42	12%								
Southbound (Villiers St to Gwydir Hwy)	172	174	14	9%								

Table 6.5: PM Travel Time Summary

		PM Peak Hour (4:00pm to 5:00pm)											
Direction	Average Observed (s)	Modelled Average (s)	Difference (seconds)	% Difference									
Northbound (Gwydir Hwy to Villiers St) ^[1]	204	182	-22	-11%									
Southbound (Prince St to Through St) ^[2]	303	289	-14	-5%									

[1] 2011 travel time data was not observed on the northbound route in the PM peak and as such 2008 travel time data has been used to validate the route in the PM peak.

[2] Due to minimal travel time data recorded for the southbound route in the PM peak, a combination of the 2008 and 2011 travel time data has been used to determine the average observed travel time.

The results presented in Table 6.4 and 6.5 indicate that the travel times generally meet the requirements set out in the validation criteria, with travel times within the 15% threshold during both the AM and PM peak hours.

6.4 Queue Length Validation Results

Whilst not a specific requirement of calibration it is noted that during peak periods, traffic congestion on the bridge over the Clarence River increases. As such, queue lengths on the bridge and approaches to the bridge were observed during site observations in order to replicate this behaviour in the Q-Paramics model.

For this assessment, northbound queue lengths were recorded on Bent Street from the bridge to Gwydir Highway. The southbound queue lengths were recorded on Fitzroy Street to Pound Street. The graphs presented in Figures 6.1 and 6.2 show the comparison of observed and modelled queue lengths on the north and south approaches to the bridge during the AM and PM peak periods respectively.

IS11352

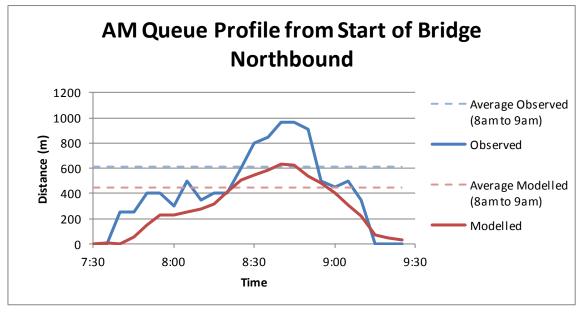
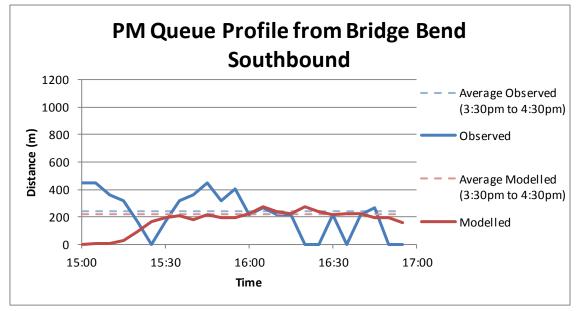



Figure 6.2: PM Peak Queue Length Comparison

Figures 6.1 and 6.2 indicate a general correlation or fit between the observed and modelled queue lengths. Furthermore, visual observations of the model suggest that queuing conditions within the model extents generally reflect the observed conditions.

It is noted that during the PM peak, there is an oscillating queue length on the south approach. This was observed on site as being the result of the constrained nature of the existing bridge where in some instances, a truck was required to stop or slow down on the bridge bend to give way to oncoming traffic, resulting in a stop of traffic.

IS1135226/07/12Main Road 83 Summerland Way, Additional Crossing of the Clarence River, Grafton, Route Options Design ReportIssue: DMicrosimulation Calibration and Validation ReportPage 13

Conclusion

7. Conclusion

The existing model has been built and calibrated using sound modelling practice, as outlined in this report. The data used to build the model was thoroughly analysed to ensure the quality of model inputs.

Modelled turning movement counts achieved a high level of correlation to observed counts. Modelled travel times also reflected observed travel times to an anticipated statistical confidence. Queue lengths on the critical approaches to the bridge over the Clarence River generally reflect the observed conditions.

The quality of input data, model building and calibration has produced a sound model, validated by travel time data. GTA considers that the model is 'fit for purpose'.

Attachment A

Attachment A

Turn Flow Comparison Results

7am to 8am			AVERAGE	Character	D'''			GEH	Within 15%, for 700veh/h <flow<2700veh h<="" th=""><th>Within 100veh/h, for</th></flow<2700veh>	Within 100veh/h, for
Intersection 3. Dobie Street and Turf Street	Approach North	Movement Through	170	Observed 182	Diff -12	% -0.1	GEH 0.90	<5 0	FALSE	Flow <700veh/h 1
Si boble street and rair street	North	Left	150	113	36.6	0.32	3.23	0	FALSE	36.
	East	Right	102	101	1.4	0.01	0.10	0	FALSE	1.
	East	Left	21	5	16	3.2	4.44	0	FALSE	1
	South	Right	18	4	14	3.5	4.22	0	FALSE	1 22.
Bent / Spring	South South	Through Left	68 8	90 12	-22.2 -4.2	-0.2 -0.4	2.48 1.26	0	FALSE	4.
benty spring	South	Through	697	629	68.4	0.11	2.64	0	FALSE	68.
	East	Left	93	37	56.4	1.52	6.95	1	FALSE	56.
	North	Left	66	88	-22.2	-0.3	2.51	0	FALSE	22.
	North	Through	447	329	117.8	0.36	5.99	1	FALSE	117.
Cuardia / Dliah	West	Left	22	21	1	0.05	0.22	0	FALSE	
Gwydir / Bligh	South South	Left Through	17 3	11 8	6 -4.8	-0.6	1.60 2.13	0	FALSE	4.
	South	Right	28	4	23.6	5.9	6.00	1	FALSE	23.
	East	Left	20	8	12	1.5	3.21	0	FALSE	1
	East	Through	178	119	59	0.5	4.84	0	FALSE	5
	East	Right	7	10	-3.4	-0.3	1.03	0	FALSE	3.
	North North	Left	10 13	23 12	-12.6 1	-0.5 0.08	3.20 0.28	0	FALSE	12.
	North	Through Right	4	12	-8.8	-0.7	3.09	0	FALSE	8.
	West	Left	18	14	3.8	0.27	1.00	0	FALSE	3.
	West	Through	206	224	-18.2	-0.1	1.23	0	FALSE	18.
	West	Right	22	13	8.8	0.68	2.15	0	FALSE	8.
Ryan St / Pac Hwy Connection	East	Through	164	221	-57.4	-0.3	4.11	0	FALSE	57.
	Manth	Right	43	65	-22.4	-0.3	2.99	0	FALSE	22.
	North	Left Right	37 49	46 16	-8.8 32.8	-0.2 2.05	1.40 5.79	0	FALSE	8.
	Weest	Left	38	29	9.2	0.32	1.55	0	FALSE	9.
		Through	147	178	-31.4	-0.2	2.43	0	FALSE	31.
Pac Hwy / connection to Ryan Street	South	Left	48	24	24.2	1.01	4.00	0	FALSE	24.
		Right	45	55	-9.8	-0.2	1.41	0	FALSE	9.
	East	Left	38	31	7.2	0.23	1.19	0	FALSE	7.
	North	Through Through	332 157	299 185	33.4 -27.8	0.11 -0.2	1.86 2.14	0	FALSE FALSE	33.
	NOTEI	Right	69	42	26.8	0.64	3.62	0	FALSE	26.
Pacific Hwy / Spring Street	East	Through	136	159	-23.4	-0.1	1.89	0	FALSE	23.
		Right	99	141	-41.8	-0.3	3.83	0	FALSE	41.
	North	Left	64	96	-31.6	-0.3	3.58	0	FALSE	31.
	M /	Right	52	33	19.4	0.59	2.91	0	FALSE	19.
	West	Left Through	130 199	118 159	12 40.4	0.1	1.08 2.99	0	FALSE	1 40.
Pacific Hwy / Gwydir	South	Left	221	173	48.2	0.23	3.42	0	FALSE	48.
		Through	176	189	-12.8	-0.1	0.96	0	FALSE	12.
	North	Through	93	128	-35.4	-0.3	3.33	0	FALSE	35.
		Right	95	82	13	0.16	1.38	0	FALSE	1
	West	Left	152 135	97 98	55.4 36.8	0.57	4.93	0	FALSE	55. 36.
Gwydir-Bent	East	Right Left	7	25	-17.8	0.38 -0.7	3.43 4.50	0	FALSE	17.
Gwydr Dent	Lust	Through	53	46	6.8	0.15	0.99	0	FALSE	6.
		Right	253	171	82.2	0.48	5.63	1	FALSE	82.
	South	Left	51	27	24	0.89	3.84	0	FALSE	2
		Through	338	363	-24.8	-0.1	1.34	0	FALSE	24.
	West	Right Left	12 139	27	-15 -0.2	-0.6 -0	3.40 0.00	0	FALSE	1
	west	Through	76	75	0.6	0.01	0.00	0	FALSE	0.
		Right	29	61	-31.6	-0.5	4.77	0	FALSE	31.
	North	Left	199	79	119.6	1.51	10.18	1	FALSE	119.
		Through	163	227	-63.6	-0.3	4.58	0	FALSE	63.
		Right	102	63	39.4	0.63	4.29	0	FALSE	39.
Fitzroy-Villers	East	Left	67 426	74 389	-6.8 36.8	-0.1 0.09	0.83	0	FALSE	6. 36.
Fitzroy-villers		Through Right	426	403	10.8	0.09	0.54	0	FALSE	30.
	South	Left	9	3	5.6	1.87	2.45	0	FALSE	5.
		Through	9	5	3.8	0.76	1.51	0	FALSE	3.
		Right	12	2	9.8	4.9	3.78	0	FALSE	9.
	West	Left	45	18	27.2	1.51	4.81	0	FALSE	27.
		Through Right	256 4	219 10	37.4 -6.4	0.17 -0.6	2.40	0	FALSE FALSE	37.
	North	Left	4 298	10	-6.4 118.8	-0.6	7.71	0	FALSE	118.
		Through	12	1/5	-2.8	-0.2	0.82	0	FALSE	2.
		Right	26	13	12.6	0.97	2.94	0	FALSE	12.
Villers-Pound	East	Left	27	9	17.6	1.96	4.24	0	FALSE	17.
		Through	21	43	-21.8	-0.5	3.89	0	FALSE	21.
	South	Right Left	27 153	8 108	19.4 44.6	2.43 0.41	4.54 3.94	0	FALSE FALSE	19. 44.
	SOUT	Left Through	216	108 294	-78.4	-0.3	3.94 4.88	0	FALSE	44.
		Right	97	36	60.8	1.69	7.48	1	FALSE	60.
	West	Left	3	4	-1	-0.3	0.53	0	FALSE	
		Through	24	24	-0.4	-0	0.00	0	FALSE	0.
		Right	85	17	68	4	9.52	1	FALSE	6
	North	Left	54	30	24.4	0.81	3.70	0	FALSE	24.
		Through Right	223 4	109 9	114.4 -4.8	1.05 -0.5	8.85 1.96	<u>1</u> 0	FALSE	114.
Fitzroy-Prince	East	Left	4 119	52	-4.8 66.6	-0.5	7.25	1	FALSE	4.
Theory Thirde	2031	Through	170	158	11.6	0.07	0.94	0	FALSE	11.
		Right	58	100	-41.8	-0.4	4.73	0	FALSE	41.
	South	Left	48	37	11	0.3	1.69	0	FALSE	1
		Through	36	43	-6.6	-0.2	1.11	0	FALSE	6.
		Right	38	29	9.2	0.32	1.55	0	FALSE	9.
	West	Left	37	8	29	3.63	6.11	1	FALSE	2
		Through Right	162 31	104 29	58.2 1.6	0.56	5.03 0.37	1 0	FALSE FALSE	58.
	North	Left	163	114	49	0.06	4.16	0	FALSE	1.
			100		- - - J	0.70	7.10	v	I ALUL	

								88%	100%	97%
							Total Sites	144	1	143
					N		rming Sites	18	0	4
						Confo	rming sites	126	1	139
			13771	90%				0070		
	1	night	13471	12128	2.0	5	0.34	88%	0	4
		Right	498	80	-2.6	-0	0.34	0	FALSE	
	NOLUI	Through	44	472	25.6	-0.4	1.18	0	 FALSE	
	North	Right Left	2 44	4 71	-1.6 -27.2	-0.4	1.15 3.56	0	 FALSE FALSE	
		Through	2	3	-0.6	-0.2	0.63	0	 FALSE	
	West	Left	116	93	23.4	0.25	2.25	0	 FALSE	
		Right	18	7	10.6	1.51	3.11	0	 FALSE	
		Through	677	714	-37.2	-0.1	1.40	0	 5.21%	FALSE
	South	Left	9	13	-4	-0.3	1.21	0	FALSE	
		Right	174	149	25.4	0.17	1.97	0	FALSE	
		Through	1	9	-7.6	-0.8	3.58	0	FALSE	
Bent-Through	East	Left	2	4	-1.8	-0.5	1.15	0	FALSE	
		Right	0	2	-1.6	-0.8	2.00	0	FALSE	
		Through	94	62	32	0.52	3.62	0	FALSE	
	North	Left	47	29	18.2	0.63	2.92	0	FALSE	
		Right	40	17	22.8	1.34	4.31	0	FALSE	
		Through	173	118	54.6	0.46	4.56	0	FALSE	
	West	Left	5	3	2.4	0.8	1.00	0	FALSE	
		Right	0	12	-12	-1	4.90	0	FALSE	
	SUUTI	Through	67	41	25.6	0.62	3.54	0	 FALSE	
	South	Left	9	48	-9.4	-0.2	0.32	0	 FALSE	
		Right	39	48	-9.4	-0.2	1.36	0	 FALSE	
Queen-Doble	East	Left Through	1 121	15	-14.2 9.6	-0.9	4.95 0.93	0	 FALSE	
Queen-Dobie	Fact	Left	1	15	-14.2	-0.9	4.95	0	 FALSE	
		Right	36	2	-7.4	-0.1	7.80	0	 FALSE	
	East	Left Through	103	3/ 110	-11.6	-0.3	2.16 0.68	0	 FALSE	
	Cont	Right	1 25	6 37	-5.2	-0.9	2.67	0	 FALSE	
		Through	47	81	-34	-0.4	4.25	0	 FALSE	
	North	Left	22	8	14	1.75	3.61	0	 FALSE	
		Right	92	47	44.6	0.95	5.40	1	 FALSE	
		Through	112	113	-0.8	-0	0.09	0	FALSE	
	West	Left	2	2	-0.2	-0.1	0.00	0	FALSE	
		Right	42	22	20.2	0.92	3.54	0	FALSE	
		Through	48	45	3.4	0.08	0.44	0	FALSE	
Prince-Dobie	South	Left	57	58	-1	-0	0.13	0	FALSE	
		Right	28	28	0	0	0.00	0	FALSE	
		Through	158	130	28	0.22	2.33	0	FALSE	
	North	Left	43	32	11.2	0.35	1.80	0	FALSE	
		Right	72	90	-18	-0.2	2.00	0	FALSE	
	west	Through	99	81	18	0.22	1.90	0	 FALSE	-
	West	Left	38	15	22.2	1.55	4.47	0	 FALSE	
		Through Right	29	7	22.2	-0.4	5.19	0	 FALSE	
	South	Left	28 74	20 117	8.2 -43	0.41 -0.4	1.63 4.40	0	 FALSE FALSE	
	6 I	Right	31	29	1.6	0.06	0.37	0	 FALSE	
		Through	84	79	4.8	0.06	0.55	0	 FALSE	

8am to 9am			AVERAGE					GEH	Within 15%, for 700veh/h <flow<2700veh h<="" th=""><th>Within 100veh/h, fo</th></flow<2700veh>	Within 100veh/h, fo
Intersection 3. Dobie Street and Turf Street	Approach North	Movement Through	MODELLED 363	Observed 373	Diff -10	% -0	GEH 0.52	<5 0	FALSE	Flow <700veh/h
5. Doble Street and Turi Street	North	Left	200	184	16.2	0.09	1.15	0	FALSE	1
	East	Right	155	158	-3.4	-0	0.24	0	FALSE	
	East	Left	19	16	3.4	0.21	0.72	0	FALSE	
	South	Right	22	10	12.2	1.22	3.00	0	FALSE	1
Death (Cardina	South	Through	151	167	-16.2	-0.1	1.27	0	FALSE	1
Bent / Spring	South South	Left Through	19 1084	24 1181	-5.2 -96.8	-0.2 -0.1	1.08 2.88	0	FALSE 8.20%	FALSE
	East	Left	158	90	68.4	0.76	6.11	1	FALSE	6
	North	Left	83	105	-21.6	-0.2	2.27	0	FALSE	2
	North	Through	606	506	100	0.2	4.24	0	FALSE	1
	West	Left	64	48	15.6	0.33	2.14	0	FALSE	1
Gwydir / Bligh	South	Left	74	45	29.4	0.65	3.76	0	FALSE	2
	South South	Through Right	5 43	20 19	-14.8 24.2	-0.7 1.27	4.24 4.31	0	FALSE FALSE	1
	East	Left	22	11	11.4	1.04	2.71	0	FALSE	1
	East	Through	254	233	20.6	0.09	1.35	0	FALSE	2
	East	Right	37	32	5.2	0.16	0.85	0	FALSE	
	North	Left	24	42	-18.2	-0.4	3.13	0	FALSE	1
	North	Through	24	25	-0.8	-0	0.20	0	FALSE	
	North West	Right Left	3 38	11 39	-7.6 -1.2	-0.7 -0	3.02 0.16	0	FALSE FALSE	
	West	Through	257	329	-71.8	-0.2	4.21	0	FALSE	7
	West	Right	35	26	9.4	0.36	1.63	0	FALSE	
Ryan St / Pac Hwy Connection	East	Through	172	264	-91.8	-0.3	6.23	1	FALSE	9
		Right	69	100	-30.6	-0.3	3.37	0	FALSE	3
	North	Left	81	75	5.8	0.08	0.68	0	FALSE	
	Weet	Right Left	86 43	45 59	41.2 -16.4	0.92 -0.3	5.07 2.24	1 0	FALSE FALSE	4
	Weest	Through	242	220	-16.4	-0.3	1.45	0	FALSE	1
Pac Hwy / connection to Ryan Street	South	Left	61	52	8.8	0.17	1.45	0	FALSE	
		Right	66	95	-28.8	-0.3	3.23	0	FALSE	2
	East	Left	62	42	19.6	0.47	2.77	0	FALSE	1
		Through	404	332	72.4	0.22	3.75	0	FALSE	7
	North	Through Right	175 118	246 83	-71.2 34.6	-0.3 0.42	4.89 3.49	0	FALSE FALSE	7
Pacific Hwy / Spring Street	East	Through	401	433	-32	-0.1	1.57	0	FALSE	3
r denie my / opinig or cet	Edot	Right	91	108	-16.8	-0.2	1.70	0	FALSE	1
	North	Left	129	171	-42.4	-0.2	3.43	0	FALSE	4
		Right	76	70	6	0.09	0.70	0	FALSE	
	West	Left	156	146	9.6	0.07	0.81	0	FALSE	
Pacific Hwy / Gwydir	South	Through Left	278 260	227 223	51.2 36.6	0.23	3.21 2.38	0	FALSE FALSE	5
Pacific Hwy / Gwydii	300111	Through	234	223	50.0	0.10	0.33	0	FALSE	3
	North	Through	176	213	-36.6	-0.2	2.65	0	FALSE	3
		Right	301	302	-1	-0	0.06	0	FALSE	
	West	Left	201	152	48.8	0.32	3.69	0	FALSE	4
Gwydir-Bent	F t	Right	114	113	1.2	0.01	0.09	0	FALSE	
	East	Left Through	50 98	39	28.2 58.6	1.28 1.5	4.67	0	FALSE FALSE	2
		Right	409	385	24	0.06	1.20	0	FALSE	
	South	Left	74	61	13.2	0.22	1.58	0	FALSE	1
		Through	432	392	39.8	0.1	1.97	0	FALSE	3
		Right	19	18	0.8	0.04	0.23	0	FALSE	
	West	Left	201	165	35.8	0.22	2.66	0	FALSE	3
		Through Right	62 61	91 57	-29 4.4	-0.3 0.08	3.32 0.52	0	FALSE FALSE	
	North	Left	234	72	161.8	2.25	13.10	1	FALSE	16
		Through	290	367	-77	-0.2	4.25	0	FALSE	
		Right	140	144	-4.2	-0	0.34	0	FALSE	
	East	Left	117	149	-32.2	-0.2	2.77	0	FALSE	3
Fitzroy-Villers		Through	658	722	-64.4	-0.1	2.44	0	8.92% FALSE	FALSE
	South	Right Left	504 26	608 15	-104 11.4	-0.2 0.76	4.41 2.43	0	FALSE	1
	50000	Through	30	17	13.2	0.78	2.68	0	FALSE	1
		Right	24	25	-1.4	-0.1	0.20	0	FALSE	
	West	Left	62	40	22.4	0.56	3.08	0	FALSE	2
		Through	361	275	85.8	0.31	4.82	0	FALSE	8
	North	Right Left	7 374	9 282	-1.8 91.8	-0.2 0.33	0.71	0	FALSE FALSE	ç
	NUTUI	Through	27	37	-9.8	-0.3	1.77	0	FALSE	2
		Right	50	40	-9.8	0.25	1.49	0	FALSE	
Villers-Pound	East	Left	52	17	35.4	2.08	5.96	1	FALSE	:
		Through	58	71	-12.8	-0.2	1.62	0	FALSE	
		Right	37	9	28	3.11	5.84	1	FALSE	
	South	Left	215	268	-53.4	-0.2	3.41	0	FALSE	
		Through Right	259 122	279 64	-19.6 57.6	-0.1 0.9	1.22 6.01	0	FALSE FALSE	
	West	Left	6	16	-10	-0.6	3.02	0	FALSE	
		Through	33	85	-51.8	-0.6	6.77	1	FALSE	
		Right	126	87	39.4	0.45	3.78	0	FALSE	
	North	Left	33	63	-30.4	-0.5	4.33	0	FALSE	
		Through	271	287	-16	-0.1	0.96	0	FALSE	
Figure - Dute -	F	Right	23	44	-21	-0.5	3.63	0	FALSE	
Fitzroy-Prince	East	Left	148 315	93 323	55.4 -7.8	0.6	5.01 0.45	<u>1</u> 0	FALSE FALSE	
		Through Right	315 114	323 123	-7.8 -9	-0 -0.1	0.45	0	FALSE	
	South	Left	66	70	-9	-0.1	0.83	0	FALSE	
	500011	Through	58	91	-33.2	-0.1	3.82	0	FALSE	:
		Right	47	29	18.2	0.63	2.92	0	FALSE	
	West	Left	27	24	3	0.13	0.59	0	FALSE	
		Through	213	177	35.6	0.2	2.58	0	FALSE	
		Right	51 185	80 127	-29.2 58	-0.4 0.46	3.58 4.64	0	FALSE FALSE	2
	North	Left								

					Non Conforming Sites Total Sites				0		2	
				100%		Confo	orming sites	126	4		138	
			19805	19827				88%	0		2	
		Right	117	158	-40.8	-0.3	3.50	0	FALSE			40.
		Through	676	702	-25.6	-0	0.99	0		3.65%	FALSE	
	North	Left	43	111	-68.2	-0.6	7.75	1	FALSE	1		68.
		Right	1	7	-6.4	-0.9	3.00	0	FALSE			6.
	WESI	Through	3	6	-37.8	-0.5	1.41	0	FALSE			37.
	West	Left	97	195	-97.8	-0.5	2.45 8.11	1	FALSE			97.
	+	Right	1086	9	-90.4 9	-0.1	2.68	0	FALSE	1.09%	FALSE	
	South	Left Through	1086	17 1176	-10.4	-0.6	2.89	0	FALSE	7.69%	FALSE	10.
	Coutk	Right Left	103 7	52 17	50.8 -10.4	0.98 -0.6	5.79 2.89	1 0	FALSE FALSE			50. 10.
	_	Through	2	7	-4.8	-0.7	2.36	0	FALSE			4.
Bent-Through	East	Left	3	16	-12.8	-0.8	4.22	0	FALSE			12.
		Right	2	20	-17.8	-0.9	5.43	1	FALSE			17.
		Through	147	137	9.6	0.07	0.84	0	FALSE			9.
	North	Left	64	43	20.8	0.48	2.87	0	FALSE			20.
		Right	77	25	51.6	2.06	7.28	1	FALSE			51.
		Through	203	237	-33.6	-0.1	2.29	0	FALSE			33.
	West	Left	5	11	-6.2	-0.6	2.12	0	FALSE			6.
		Right	0	11	-10.6	-1	4.69	0	FALSE			10.
		Through	91	68	23.4	0.34	2.58	0	FALSE			23.
	South	Left	28	17	10.8	0.64	2.32	0	FALSE			10.
		Right	65	54	10.8	0.2	1.43	0	FALSE			10.
		Through	163	186	-23.4	-0.1	1.74	0	FALSE			23.
Queen-Dobie	East	Left	3	14	-11.2	-0.8	3.77	0	FALSE			11.
	1	Right	54	5	49	9.8	9.02	1	FALSE			4
	Lasi	Through	151	161	-9.8	-0.1	0.80	0	FALSE			9
	East	Left	61	56	-4.4	0.09	0.65	0	FALSE			4
	+	Through Right	2	153 6	-21 -4.4	-0.1	2.00	0	FALSE FALSE			4
	North	Left	16 132	10 153	6.4	0.64 -0.1	1.66 1.76	0	FALSE			6
	News	Right	128	144	-16.2	-0.1	1.37	0	FALSE			16.
		Through	120	147	-26.8	-0.2	2.34	0	FALSE			26.
	West	Left	3	7	-4.4	-0.6	1.79	0	FALSE			4.
		Right	43	23	20.4	0.89	3.48	0	FALSE			20.
		Through	87	65	21.8	0.34	2.52	0	FALSE			21.
Prince-Dobie	South	Left	77	92	-14.8	-0.2	1.63	0	FALSE			14.
		Right	90	67	23	0.34	2.60	0	FALSE			2
		Through	233	201	32.2	0.16	2.17	0	FALSE			32.
	North	Left	69	85	-16.2	-0.2	1.82	0	FALSE			16.
		Right	149	117	32.2	0.28	2.77	0	FALSE			32.
	west	Through	142	207	-64.6	-0.3	4.92	0	FALSE			64.
	West	Left	66	53	-11	-0.4	1.69	0	FALSE			1
	+	Through Right	111 16	162 27	-51.2 -11	-0.3 -0.4	4.37 2.37	0	FALSE FALSE			51. 1
	South	Left	73	60	12.8	0.21	1.59	0	FALSE			12.
	Counth	Right	89	56	33	0.59	3.88	0	FALSE			3
		Through	169	211	-42	-0.2	3.05	0	FALSE			4
Prince-Pound	East	Left	9	74	-65.2	-0.9	10.09	1	FALSE			65
		Right	52	69	-16.6	-0.2	2.19	0	FALSE			16.

3pm to 4pm			AVERAGE						GEH		Within 15%, for	Within 100veh/h, for
Intersection 3. Dobie Street and Turf Street	Approach North	Movement Through	214	Observed 240		Diff -25.8	% -0.1	GEH 1.73	<5 0		700veh/h <flow<2700veh h<br="">FALSE</flow<2700veh>	Flow <700veh/h 25.
3. Doble Street and Turi Street	North	Left	162	180		-23.8	-0.1	1.38	0		FALSE	1
	East	Right	186	209		-23	-0.1	1.64	0		FALSE	2
	East	Left	28	24		4.2	0.18	0.78	0		FALSE	4.
	South South	Right Through	18 298	13 290		4.8 8.2	0.37	1.27 0.47	0		FALSE FALSE	4.
Bent / Spring	South	Left	37	37		-0.2	-0	0.00	0		FALSE	0.
	South	Through	784	724		59.6	0.08	2.19	0		8.23%	FALSE
	East	Left Left	99 100	120 115		-21.2 -14.6	-0.2 -0.1	2.01	0		FALSE FALSE	21.
	North North	Through	937	942		-14.0	-0.1	0.16	0		0.55%	FALSE
	West	Left	28	47		-19.2	-0.4	3.10	0		FALSE	19.
Gwydir / Bligh	South	Left	43	22		20.8	0.95	3.68	0		FALSE	20.
	South South	Through Right	3 14	8 9		-5 5.2	-0.6 0.58	2.13	0		FALSE FALSE	5.
	East	Left	34	20		14.4	0.72	2.69	0		FALSE	14
	East	Through	333	361		-28.4	-0.1	1.50	0		FALSE	28
	East North	Right Left	8 50	19 89		-11.4 -39.2	-0.6 -0.4	2.99 4.68	0		FALSE FALSE	11.
	North	Through	43	32		-39.2	-0.4	4.68	0		FALSE	10.
	North	Right	24	43		-19.2	-0.4	3.28	0		FALSE	19.
	West	Left	20	26		-5.8	-0.2	1.25	0		FALSE	5.
	West West	Through	269 31	278 18		-9 13.4	-0 0.74	0.54	0		FALSE FALSE	13.
Ryan St / Pac Hwy Connection	East	Right Through	177	284		-107.2	-0.4	2.63 7.05	1		FALSE	107.
,, ,		Right	84	85		-1.4	-0	0.11	0		FALSE	1.
	North	Left	42	61		-18.8	-0.3	2.65	0		FALSE	18.
	Weest	Right Left	64 47	28 47		35.6 0	1.27 0	5.31 0.00	<u>1</u> 0	-	FALSE FALSE	35.
	vveest	Left Through	254	47 369		-115.2	-0.3	0.00 6.52	0	-	FALSE	115
Pac Hwy / connection to Ryan Street	South	Left	26	39		-12.6	-0.3	2.28	0		FALSE	12
	F	Right	76	75		0.6	0.01	0.12	0	<u> </u>	FALSE	0.
	East	Left Through	64 372	47 309		16.8 63.4	0.36	2.28	0	┣	FALSE FALSE	16.
	North	Through	398	411	L	-12.8	-0	0.65	0	L	FALSE	12.
		Right	54	53		0.8	0.02	0.14	0		FALSE	0.
Pacific Hwy / Spring Street	East	Through	233	237		-3.8	-0	0.26	0		FALSE	3.
	North	Right Left	44 129	88 169		-44 -40	-0.5 -0.2	5.42 3.28	1 0		FALSE FALSE	4
	Hora	Right	114	89		24.6	0.28	2.48	0		FALSE	24.
	West	Left	112	124		-12	-0.1	1.10	0		FALSE	1
Decific Huny / Cunydin	South	Through Left	256 223	248 164		8 59.2	0.03	0.50	0		FALSE FALSE	59
Pacific Hwy / Gwydir	South	Through	223	231		-15.8	-0.1	1.07	0		FALSE	15
	North	Through	230	254		-24.2	-0.1	1.54	0		FALSE	24.
		Right	117	80		37	0.46	3.73	0		FALSE	3
	West	Left Right	152 222	130 202		22.4 20	0.17	1.85	0		FALSE FALSE	22.
Prince-Dobie	South	Left	91	166		-75	-0.5	6.62	1		FALSE	7
		Through	175	129		46	0.36	3.73	0		FALSE	4
	Mash	Right	19	39		-19.6	-0.5	3.71	0		FALSE	19.
	West	Left Through	0 222	5 173		-4.8 48.6	-1 0.28	3.16 3.49	0		FALSE FALSE	4.
		Right	110	95		15.4	0.16	1.48	0		FALSE	15.
	North	Left	23	14		9.2	0.66	2.09	0		FALSE	9.
		Through Right	<u>117</u> 4	116 9		-5.2	0.01	0.09	0		FALSE FALSE	5.
	East	Left	32	41		-9	-0.2	1.49	0		FALSE	0.
		Through	190	137		53	0.39	4.14	0		FALSE	5
Queen-Dobie	Feet	Right	24	18		5.6	0.31	1.31	0		FALSE	5.
Queen-Doble	East	Left Through	7 202	21 224		-14.4 -21.8	-0.7	3.74	0		FALSE FALSE	14.
		Right	76	65		11	0.17	1.31	0		FALSE	1
	South	Left	38	24		14.4	0.6	2.51	0		FALSE	14.
		Through Right	63 3	90 23		-27 -19.6	-0.3 -0.9	3.09	0		FALSE FALSE	2
	West	Left	8	13		-19.0	-0.9	1.54	0	L	FALSE	5.
		Through	200	212		-11.6	-0.1	0.84	0		FALSE	11.
	pt - of	Right	27	14		12.8	0.91	2.87	0		FALSE	12
	North	Left Through	129 81	46 111		83 -29.8	1.8 -0.3	8.87 3.06	<u>1</u> 0	-	FALSE FALSE	8
		Right	7	111		-29.8	-0.5	1.90	0		FALSE	
Bent-Through	East	Left	22	18	-	3.8	0.21	0.89	0		FALSE	3
		Through	26	14		12.2	0.87	2.68	0	_	FALSE	12
	South	Right Left	131 14	205 44		-74.2 -29.6	-0.4 -0.7	5.71 5.57	1	-	FALSE FALSE	29
		Through	784	829		-45.2	-0.1	1.58	0		5.45%	
		Right	11	33		-22.4	-0.7	4.69	0	\vdash	FALSE	22
	West	Left Through	131 3	139 11		-8 -8.2	-0.1 -0.7	0.69	0	┣—	FALSE FALSE	8
		Right	14	11 10	L	-0.2	0.4	1.15	0	L	FALSE	
	North	Left	114	163		-49.4	-0.3	4.16	0		FALSE	49
		Through	998	881		116.6	0.13	3.82	0		13.23%	
Gwydir-Bent	East	Right Left	121 28	255 37		-134.4 -8.6	-0.5	9.77 1.58	<u>1</u> 0	-	FALSE FALSE	134
Gwyuir-bent	Edsl	Leπ Through	62	37 81		-8.6 -18.6	-0.2	2.25	0	⊢	FALSE	18
		Right	249	176		73.4	0.42	5.01	1		FALSE	73
	South	Left	63	68		-4.8	-0.1	0.62	0	\vdash	FALSE	4
	<u> </u>	Through Right	461 13	463 37		-2 -24.4	-0 -0.7	0.09	0	┣—	FALSE FALSE	24
	West	Left	91	37 133		-24.4 -42	-0.7	4.80	0		FALSE	24
		Through	116	115		1	0.01	0.09	0		FALSE	
		Right	127	124		2.6	0.02	0.27	0		FALSE	2.
	North	Left	246	150 559		96	0.64	6.82 3.92	1 0	-	FALSE	g
		Through	470			-89	-0.2				FALSE	8

	East	Left	70	93		-22.8	-0.2	2.55	0		FALSE	22
Fitzroy-Villers		Through	551	584	1	-32.6	-0.1	1.39	0		FALSE	32
		Right	407	535		-128.4	-0.2	5.90	1		FALSE	128
	South	Left	4	16		-12	-0.8	3.79	0		FALSE	1
		Through	8	23		-15.4	-0.7	3.81	0		FALSE	15
		Right	74	52		22.2	0.43	2.77	0		FALSE	22
	West	Left	89	65		23.8	0.37	2.74	0		FALSE	23
		Through	559	517		41.6	0.08	1.81	0		FALSE	41
		Right	12	17		-4.6	-0.3	1.31	0		FALSE	4
	North	Left	528	362		165.8	0.46	7.87	1		FALSE	165
		Through	25	33		-8	-0.2	1.49	0		FALSE	
		Right	15	23		-7.6	-0.3	1.84	0		FALSE	7
Villers-Pound	East	Left	53	22		31	1.41	5.06	1		FALSE	
		Through	117	63		54.4	0.86	5.69	1		FALSE	54
		Right	33	10		23	2.3	4.96	0		FALSE	2
	South	Left	186	243		-57.4	-0.2	3.89	0		FALSE	57
	boutin	Through	225	293		-68	-0.2	4.23	0		FALSE	(
		Right	89	31		58	1.87	7.49	1		FALSE	5
	West	Left	40	57		-17.4	-0.3	2.44	0		FALSE	17
	west	Through	194	143		50.6	0.35	3.93	0		FALSE	50
		Right	155	143		-6.4	-0	0.48	0		FALSE	6
	North	Left	51	88		-36.8	-0.4	4.44	0		FALSE	36
	North	Through	372	251		121.2	0.48	6.86	1		FALSE	121
		Right	10	47		-36.6	-0.8	6.93	1		FALSE	36
Fitzroy-Prince	East	Left	84	92		-30.0	-0.8	0.85	0		FALSE	
Fitzroy-Prince	EdSL	1	253	252		-7.8	-0.1	0.85	0		FALSE	1
		Through Right	131	145		-14.4	-0.1	1.19	0		FALSE	14
	South	Left	51	76		-14.4	-0.1	3.14	0		FALSE	25
	South	Through	107	123		-25.4	-0.3	1.49	0		FALSE	
												16
		Right	106	100		5.6	0.06	0.59	0		FALSE	5
	West	Left	25	41		-16	-0.4	2.79	0		FALSE	
		Through	249	228		21.2	0.09	1.36	0		FALSE	21
	N. dt	Right	32	36		-4.2	-0.1	0.69	0		FALSE	4
	North	Left	139	165		-26	-0.2	2.11	0		FALSE	
		Through	111	72		38.8	0.54	4.08	0		FALSE	38
	_	Right	34	32		1.6	0.05	0.35	0		FALSE	1
Prince-Pound	East	Left	21	98		-77.4	-0.8	9.98	1		FALSE	77
		Through	226	190		36.4	0.19	2.50	0		FALSE	36
		Right	61	112		-51.2	-0.5	5.48	1		FALSE	51
	South	Left	94	91		2.6	0.03	0.31	0		FALSE	2
		Through	158	203		-44.8	-0.2	3.35	0		FALSE	44
		Right	7	25		-17.8	-0.7	4.50	0		FALSE	17
	West	Left	83	106		-23	-0.2	2.37	0		FALSE	
		Through	250	234		15.6	0.07	1.03	0		FALSE	15
		Right	87	101		-14.4	-0.1	1.44	0		FALSE	14
	North	Left	82	127		-45.4	-0.4	4.40	0		FALSE	45
		Through	174	202		-28.2	-0.1	2.04	0		FALSE	28
		Right	24	44		-20.2	-0.5	3.43	0	1	FALSE	20
			20317	20912								

123 21 144 **85%** 138 6 144 **96%** 4 0 4 100%

Conforming sites Non Conforming Sites Total Sites

4pm to 5pm			AVERAGE	observe t			~		GEH		Within 15%, for 700veh/h <flow<2700veh h<="" th=""><th>Within 100veh/h, for</th></flow<2700veh>	Within 100veh/h, for
Intersection 3. Dobie Street and Turf Street	Approach North	Movement Through	206	Observed 191		Diff 14.6	% 0.08	GEH 1.06	<5 0	_	FALSE	Flow <700veh/h 14.
5. Doble Street and Turi Street	North	Left	172	151		14.0	0.08	1.00	0		FALSE	14.
	East	Right	167	187		-19.8	-0.1	1.50	0		FALSE	19
	East	Left	26	15		11.2	0.75	2.43	0		FALSE	11.
	South	Right	17	19		-1.8	-0.1	0.47	0		FALSE	1.
	South	Through	311	282		29.2	0.1	1.68	0		FALSE	29.
Bent / Spring	South South	Left Through	30 754	37 724		-6.8 30.2	-0.2 0.04	1.21	0	_	FALSE 4.17%	6. FALSE
	East	Left	99	120		-21	-0.2	2.01	0		FALSE	2
	North	Left	115	115		-0.4	-0	0.00	0		FALSE	0.
	North	Through	968	942		26.4	0.03	0.84	0		2.80%	FALSE
	West	Left	24	47		-22.6	-0.5	3.86	0		FALSE	22.
Gwydir / Bligh	South	Left	39	22		16.8	0.76	3.08	0		FALSE	16.
	South	Through	3	8		-5	-0.6	2.13	0		FALSE	9.
	South East	Right Left	18 39	9 20		9.2 19.2	1.02 0.96	2.45 3.50	0		FALSE FALSE	19
	East	Through	356	361		-5.2	-0	0.26	0		FALSE	5.
	East	Right	6	19		-13	-0.7	3.68	0		FALSE	1
	North	Left	52	89		-37.2	-0.4	4.41	0		FALSE	37.
	North	Through	48	32		16.4	0.51	2.53	0		FALSE	16
	North	Right	<u>19</u> 17	43		-24.4	-0.6	4.31	0		FALSE	24.
	West West	Left Through	257	26 278		-8.8 -20.8	-0.3 -0.1	1.94	0		FALSE FALSE	8
	West	Right	33	18		-20.8	0.81	2.97	0		FALSE	14
Ryan St / Pac Hwy Connection	East	Through	185	284		-99	-0.3	6.46	1		FALSE	g
		Right	74	85		-11.2	-0.1	1.23	0		FALSE	11.
	North	Left	41	61		-20.2	-0.3	2.80	0		FALSE	20.
		Right	62	28		33.8	1.21	5.07	1		FALSE	33
	Weest	Left	45	47		-1.6	-0	0.29	0	H	FALSE	1
Pac Hwy / connection to Ryan Street	South	Through Left	260 43	369 39		-108.6 4	-0.3 0.1	6.15 0.62	1 0	\square	FALSE FALSE	108
Pac Hwy / connection to Ryan Street	South	Right	65	39 75		-10	-0.1	1.20	0		FALSE	1
	East	Left	61	47	1	14.2	0.3	1.91	0	T	FALSE	14.
		Through	398	309		88.6	0.29	4.73	0		FALSE	88
	North	Through	443	411		32.4	0.08	1.55	0		FALSE	32.
		Right	52	53	<u> </u>	-1.4	-0	0.14	0		FALSE	1.
Pacific Hwy / Spring Street	East	Through	265	237		27.8	0.12	1.77	0		FALSE	27.
	North	Right Left	57 137	88 169		-31 -32.2	-0.4 -0.2	3.64	0		FALSE FALSE	332
	North	Right	137	89		27.6	0.31	2.39	0		FALSE	27.
	West	Left	122	124		-1.6	-0	0.18	0		FALSE	1
		Through	291	248		43.4	0.18	2.62	0		FALSE	43
Pacific Hwy / Gwydir	South	Left	228	164		64.2	0.39	4.57	0		FALSE	64
		Through	254	231		23	0.1	1.48	0		FALSE	2
	North	Through	268	254		13.6	0.05	0.87	0		FALSE	13.
	14/1	Right	113	80 130		32.6	0.41	3.36	0	_	FALSE	32
	West	Left Right	161 227	202		30.8 25	0.24	1.71	0		FALSE FALSE	30.
	West	Left	91	147		-56	-0.4	5.13	1		FALSE	5
		Through	175	154		21	0.14	1.64	0		FALSE	2
		Right	19	47		-27.6	-0.6	4.87	0		FALSE	27.
	North	Left	0	11		-10.8	-1	4.69	0		FALSE	10.
		Through	222	154		67.6	0.44	4.96	0		FALSE	67.
	East	Right Left	110 23	97 11		13.4 12.2	0.14	1.28	0		FALSE FALSE	13.
	Last	Through	117	127		-10	-0.1	0.91	0		FALSE	12
		Right	4	6		-2.2	-0.4	0.89	0		FALSE	2
Queen-Dobie	East	Left	32	49		-17	-0.3	2.67	0		FALSE	1
		Through	190	124		66	0.53	5.27	1		FALSE	6
	a	Right	24	18		5.6	0.31	1.31	0		FALSE	5.
	South	Left	7 202	12 214		-5.4 -11.8	-0.5 -0.1	1.62	0		FALSE FALSE	5
		Through Right	76	53		-11.8	-0.1	0.83	0	\square	FALSE	2
	West	Left	38	23	1	15.4	0.43	2.72	0	T	FALSE	15
		Through	63	90		-27	-0.3	3.09	0		FALSE	2
		Right	3	17		-13.6	-0.8	4.43	0		FALSE	13
	North	Left	8	12		-4.2	-0.4	1.26	0		FALSE	4
		Through	200	194		6.4	0.03	0.43	0		FALSE	6 11
Bent-Through	East	Right Left	27 129	15 47		11.8 82	0.79	2.62 8.74	0	\vdash	FALSE FALSE	11
Sent mough	LUJI	Through	81	99		-17.8	-0.2	1.90	0		FALSE	17
		Right	7	9		-2	-0.2	0.71	0		FALSE	
	South	Left	22	16		5.8	0.36	1.38	0		FALSE	5
		Through	26	19		7.2	0.38	1.48	0		FALSE	7
	Mart	Right	131 14	144 41		-13.2	-0.1	1.11 5.15	0	H	FALSE	13
	West	Left Through	14 784	41 687		-26.6 96.8	-0.6 0.14	3.58	0	\vdash	FALSE FALSE	26
		Right	11	19		-8.4	-0.4	2.07	0		FALSE	8
	North	Left	131	145		-14	-0.1	1.19	0		FALSE	
		Through	3	11		-8.2	-0.7	3.02	0		FALSE	٤
		Right	14	22		-8	-0.4	1.89	0		FALSE	
			114	176		-62.4	-0.4	5.15	1	H	FALSE	62
Guardin Boot	Eact	Loft	998	971		26.6 -116.4	0.03	0.86	0		2.74%	
Gwydir-Bent	East South	Left Left	121 27	237 37	37	-116.4 -9.6	-0.5	8.67 1.77	1 0	H	FALSE FALSE	116
	Jouth	Through	77	81	81	-9.6	-0.3	0.45	0	\square	FALSE	
		Right	237	176	176	61	0.35	4.24	0		FALSE	
	West	Left	72	68	68	3.6	0.05	0.48	0		FALSE	
		Through	439	463	463	-23.8	-0.1	1.13	0		FALSE	23
		Right	12	37	37	-24.8	-0.7	5.05	1	Ш	FALSE	24
	North	Left	84	133	133	-49	-0.4	4.70	0	Щ	FALSE	
		Through	119	115	115 124	3.8 0	0.03	0.37	0		FALSE	3
	East	Right Left	124 257	124 150	124	0 107	0.71	0.00	0	H	FALSE FALSE	10
Fitzroy-Villers	Lasi	Through	490	559	559	-69.2	-0.1	3.01	0	\square	FALSE	69
		Right	252	255	255	-3	-0	0.19	0	-	FALSE	

	Cauth	بلكم ا	63	77	77	15.4	0.2	1.00	0	1	EALOE	15
	South	Left	62	77	77	-15.4	-0.2	1.80	0		FALSE	15.4
		Through	573	530	530	43.2	0.08	1.83	0		FALSE	43.2
		Right	366	403	403	-37	-0.1	1.89	0		FALSE	37
	West	Left	5	9	9	-3.8	-0.4	1.51	0		FALSE	3.8
		Through	6	23	23	-17	-0.7	4.46	0		FALSE	17
		Right	82	77	77	5	0.06	0.56	0		FALSE	5
	North	Left	87	52	52	35	0.67	4.20	0		FALSE	35
		Through	614	559	559	54.8	0.1	2.27	0		FALSE	54.8
		Right	13	21	21	-7.8	-0.4	1.94	0		FALSE	7.8
Villers-Pound	East	Left	497	367	367	129.6	0.35	6.25	1		FALSE	129.0
		Through	21	23	23	-1.6	-0.1	0.43	0		FALSE	1.0
		Right	22	26	26	-3.8	-0.1	0.82	0		FALSE	3.8
	South	Left	78	22	22	56	2.55	7.92	1		FALSE	56
		Through	100	81	81	19.2	0.24	2.00	0		FALSE	19.2
		Right	40	7	7	33.4	4.77	6.81	1		FALSE	33.4
	West	Left	162	153	153	9.2	0.06	0.72	0		FALSE	9.2
		Through	220	244	244	-23.8	-0.1	1.58	0		FALSE	23.8
		Right	74	33	33	41.4	1.25	5.61	1		FALSE	41.4
	North	Left	37	52	52	-14.6	-0.3	2.25	0		FALSE	14.6
		Through	170	171	171	-1	-0	0.08	0		FALSE	
		Right	133	195	195	-61.6	-0.3	4.84	0		FALSE	61.6
Fitzroy-Prince	East	Left	56	76	76	-20.4	-0.3	2.46	0		FALSE	20.4
		Through	316	262	262	53.6	0.2	3.18	0		FALSE	53.0
		Right	12	53	53	-41	-0.8	7.19	1		FALSE	41
	South	Left	96	93	93	3	0.03	0.31	0		FALSE	(
		Through	264	216	216	48.2	0.22	3.10	0		FALSE	48.2
		Right	140	158	158	-18.2	-0.1	1.47	0		FALSE	18.2
	West	Left	41	74	74	-33	-0.4	4.35	0		FALSE	33
		Through	96	125	125	-28.8	-0.2	2.76	0		FALSE	28.8
		Right	104	67	67	36.6	0.55	4.00	0		FALSE	36.
	North	Left	28	66	66	-37.6	-0.6	5.54	1		FALSE	37.0
		Through	246	246	246	0.2	0	0.00	0		FALSE	0.3
		Right	33	47	47	-13.8	-0.3	2.21	0		FALSE	13.8
Prince-Pound	East	Left	176	197	197	-21.4	-0.1	1.54	0		FALSE	21.4
		Through	117	109	109	8	0.07	0.75	0		FALSE	ł
		Right	35	42	42	-7.2	-0.2	1.13	0		FALSE	7.3
	South	Left	25	72	72	-47	-0.7	6.75	1		FALSE	4
		Through	202	191	191	11.4	0.06	0.78	0		FALSE	11.4
		Right	63	93	93	-30.2	-0.3	3.40	0		FALSE	30.
	West	Left	92	92	92	0.2	0.5	0.00	0		FALSE	0.:
		Through	165	218	218	-52.8	-0.2	3.83	0		FALSE	52.
		Right	5	45	45	-39.6	-0.9	8.00	1		FALSE	39.0
	North	Left	100	84	84	-33.0	0.19	1.67	0		FALSE	1
	North	Through	245	212	212	33.2	0.15	2.18	0		FALSE	33.2
		Right	108	102	102	6.2	0.16	0.59	0		FALSE	6.2
Princes-Pound North Left		night	71	102	102	-37.8	-0.3	4.01	0		FALSE	37.0
Princes-Pound North Through	1		189	109	109	-37.8	-0.3	0.37	0		FALSE	5.4
	t		32	44	44	-11.8	-0.3	1.95	0	\vdash	FALSE	5.4
Princes-Pound North Right			20571	20400			1 1		87%		0	4

4 141 **97%** 19 144 **87%** 0 3 **100%**

Conforming sites Non Conforming Sites Total Sites

Attachment B

Attachment B

Travel Time Comparison Results

Attachment B

		Grafton Northbound								
			Average Modelled							
		28	560	2849	7771	86524	AVG	Observed	Diff	%
	Northbound Section 1-5 (Gwydir Hwy - Pound St)	340	317	332	320	316	324			
	Northbound Section 1 (Gwydir - Through)	42	41	42	41	42	42			
7:00-8:00	Northbound Section 2 (Through - Bridge bend)		44	62	43	55	53			
7.00-8.00	Northbound Section 3 (Bridge bend - Villiers)	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A			
	Northbound Section 4 (Villiers - Prince)	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A			
	Northbound Section 5 (Fitzroy - Pound)	78	76	75	78	76	76			
	Northbound Section 1-5 (Gwydir Hwy - Pound St)	612	489	531	400	515	502	543	-41	-7.6
	Northbound Section 1 (Gwydir - Through)	201	123	140	44	144	129	197	-68	-34.4
8:00-9:00	Northbound Section 2 (Through - Bridge bend)	208	182	205	141	191	185	158	28	17.8
(2008)	Northbound Section 3 (Bridge bend - Villiers)	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	96	#N/A	#N/A
	Northbound Section 4 (Villiers - Prince)	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	56	#N/A	#N/A
	Northbound Section 5 (Fitzroy - Pound)	79	77	76	78	78	77	37	41	110.8
	Bent St (Gwydir to Vlilliers)	484	398	421	282	406	397	355	42	12.0
8:00-9:00	Northbound Section 1 (Gwydir - Through)	201	123	140	44	144	129	99	30	30.6
	Northbound Section 2 (Through - Bridge bend)	208	182	205	141	191	185	151	35	23.1
(2011)	Northbound Section 3 (Bridge bend - Villiers)	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	105	#N/A	#N/A
	Northbound Section 4 (Villiers - Prince)	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	55	#N/A	#N/A

		Grafton Southbound								
		Average Modelled								
		28	560	2849	7771	86524	AVG	Observed	Diff	%
	Southbound Section 5-1 (Pound St - Gwydir Hwy)	261	262	260	263	260	261			
	Southbound Section 5 (Pound - Fitzroy)	36	39	36	39	36	37			
7:00-8:00	Southbound Section 4 (Prince - Villiers)	44	44	44	44	43	44			
7:00-8:00	Southbound Section 3 (Villiers - Bridge bend)	99	99	99	99	99	99			
	Southbound Section 2 (Bridge bend - Through)	99	99	99	99	99	99			
	Southbound Section 1 (Through - Gwydir)	42	42	42	43	42	42			
	Southbound Section 5-1 (Pound St - Gwydir Hwy)	273	268	267	267	268	268	284	-15	-5.4
	Southbound Section 5 (Pound - Fitzroy)	46	44	42	44	44	44	38	6	15.4
8:00-9:00	Southbound Section 4 (Prince - Villiers)	44	44	44	44	43	44	64	-20	-31.6
(2008)	Southbound Section 3 (Villiers - Bridge bend)	100	100	100	100	100	100	92	8	8.4
	Southbound Section 2 (Bridge bend - Through)	38	38	38	38	38	38	43	-5	-11.5
	Southbound Section 1 (Through - Gwydir)	43	43	43	43	43	43	47	-4	-8.7
8:00-9:00 (2011)	Bent St (Villiers to Gwydir)	174	173	174	173	174	174	160	14	8.8

				Grafton No						
			Average Modelled							
		28	560	2849	7771	86524	AVG	Observed	Diff	%
	Northbound Section 1-5 (Gwydir Hwy - Pound St)	314	316	320	325	312	318	319	-1	-0.4
	Northbound Section 1 (Gwydir - Through)	42	42	42	42	42	42	59	-17	-28.8
15:00-16:00	Northbound Section 2 (Through - Bridge bend)	41	42	44	42	42	42	59	-16	-27.8
(2008)	Northbound Section 3 (Bridge bend - Villiers)	98	97	97	101	96	98	101	-3	-2.9
	Northbound Section 4 (Villiers - Prince)	58	58	57	59	58	58	57	1	1.9
	Northbound Section 5 (Fitzroy - Pound)	77	79	79	78	77	78	44	34	77.0
	Northbound Section 1-5 (Gwydir Hwy - Pound St)	332	323	315	330	315	325	291	34	11.6
	Northbound Section 1 (Gwydir - Through)	42	42	42	42	42	42	54	-12	-22.4
16:00-17:00	Northbound Section 2 (Through - Bridge bend)	41	41	40	43	42	41	60	-19	-30.9
(2008)	Northbound Section 3 (Bridge bend - Villiers)	103	98	96	103	95	99	90	9	10.4
	Northbound Section 4 (Villiers - Prince)	60	58	58	61	58	59	48	11	22.3
	Northbound Section 5 (Fitzroy - Pound)	82	78	78	78	78	79	39	40	103.7
	Northbound Section 1-5 (Gwydir Hwy - Pound St)	320	312	316	313	313	315	291	24	8.2
	Northbound Section 1 (Gwydir - Through)	42	42	42	42	42	42	54	-12	-22.5
17:00-18:00	Northbound Section 2 (Through - Bridge bend)	39	38	39	38	38	38	60	-22	-36.0
(2008)	Northbound Section 3 (Bridge bend - Villiers)	98	96	96	96	96	96	90	6	7.1
	Northbound Section 4 (Villiers - Prince)	58	57	57	57	57	57	48	9	18.9
	Northbound Section 5 (Fitzroy - Pound)	81	78	82	80	79	80	39	41	106.3

				Grafton So	1					
		Average Modelled								
		28	560	2849	7771	86524	AVG	Observed	Diff	%
	Southbound Section 5-1 (Pound St - Gwydir Hwy)	359	321	305	413	296	358	295	64	21.7
	Southbound Section 5 (Pound - Fitzroy)	49	46	45	51	46	47	49	-2	-3.2
15:00-16:00	Southbound Section 4 (Prince - Villiers)	45	43	43	52	43	46	66	-20	-30.3
(2008)	Southbound Section 3 (Villiers - Bridge bend)	180	166	130	198	124	161	99	63	63.8
	Southbound Section 2 (Bridge bend - Through)	38	38	38	38	38	38	40	-1	-3.3
	Southbound Section 1 (Through - Gwydir)	45	45	45	45	45	45	42	3	7.5
15:00-16:00	Bent St (Prince/Villiers to Bent/Through) - 2011	262	248	212	288	206	245	204	42	20.5
(2008)										
15:00-16:00 (2011)	Bent St (Prince/Villiers to Bent/Through) - 2011	262	248	212	288	206	245	394	-149	-37.8
15:00-16:00										
(Average	Bent St (Prince/Villiers to Bent/Through) - 2011	262	248	212	288	206	245	299	-54	-17.9
2008 & 2011)										
	Southbound Section 5-1 (Pound St - Gwydir Hwy)	443	390	287	426	323	415	289	127	43.8
	Southbound Section 5 (Pound - Fitzroy)	60	50	45	57	45	53	33	20	58.8
16:00-17:00	Southbound Section 4 (Prince - Villiers)	60	48	43	58	43	52	60	-9	-14.2
(2008)	Southbound Section 3 (Villiers - Bridge bend)	239	220	119	218	169	198	102	96	94.1
	Southbound Section 2 (Bridge bend - Through)	38	39	38	39	38	38	49	-10	-20.8
	Southbound Section 1 (Through - Gwydir)	45	45	45	45	45	45	44	1	2.2

- A 87 High Street South PO Box 684 KEW VIC 3101
- P +613 9851 9600 F +613 9851 9610
- E melbourne@gta.com.au

Sydney

- A Level 2, 815 Pacific Highway CHATSWOOD NSW 2067 PO Box 5254
- WEST CHATSWOOD NSW 1515 P +612 8448 1800
- F +612 8448 1810
- E sydney@gta.com.au

Brisbane

- A Level 3, 527 Gregory Terrace BOWEN HILLS QLD 4006 PO Box 555 FORTITUDE VALLEY QLD 4006
- P +617 3113 5000
- F +617 3113 5010
- E brisbane@gta.com.au

Canberra

- A Unit 4, Level 1, Sparta Building, 55 Woolley Street A Level 1, 25 Sturt Street PO Box 62 DICKSON ACT 2602
- P +612 6243 4826
- F +612 6243 4848
- E canberra@gta.com.au

Adelaide

- A Suite 4, Level 1, 136 The Parade PO Box 3421
- NORWOOD SA 5067 P +618 8334 3600
- F +618 8334 3610
- E adelaide@gta.com.au

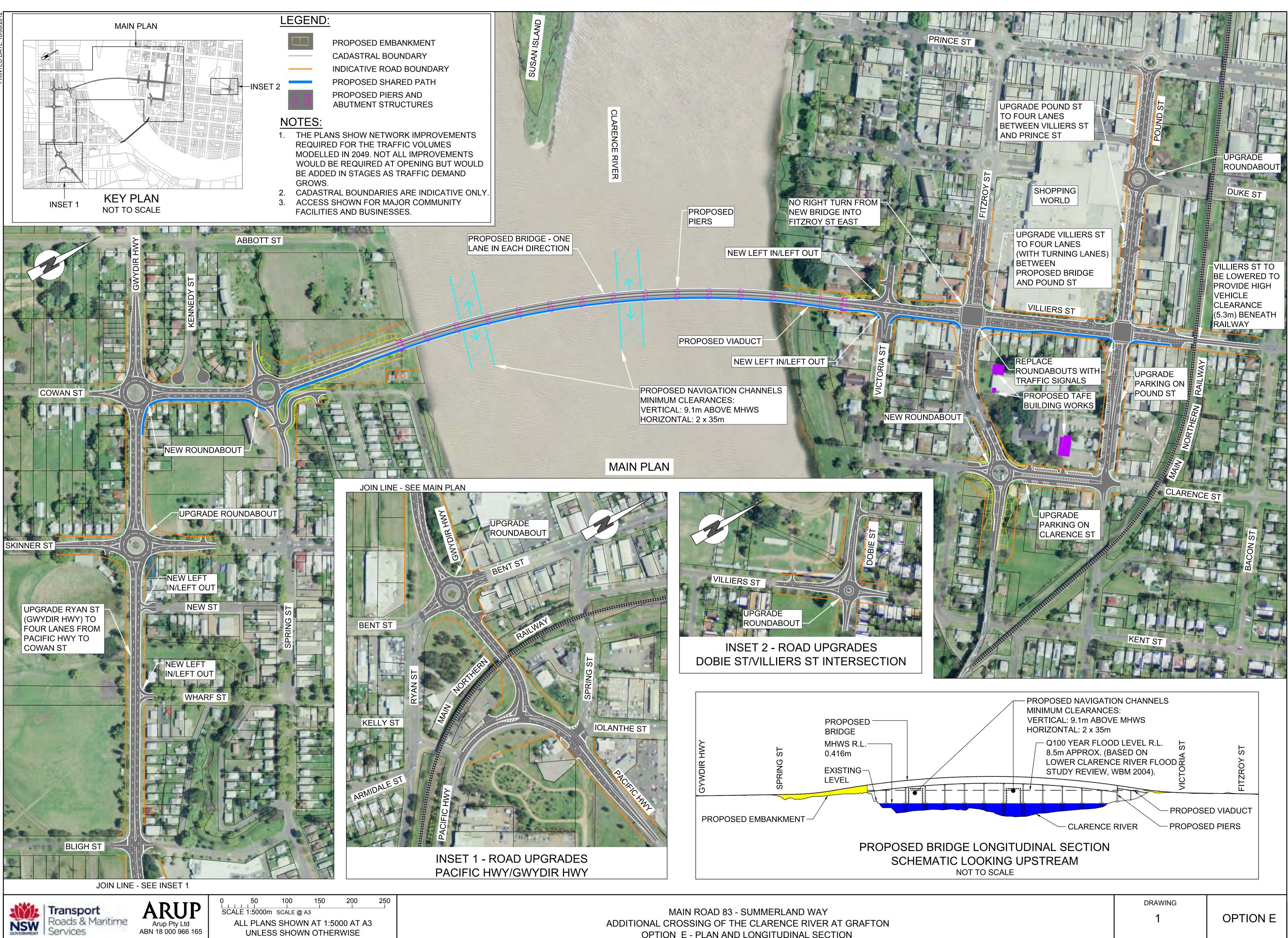
Gold Coast

- A Level 9, Corporate Centre 2 Box 37 1 Corporate Court
- BUNDALL QLD 4217
- P +617 5510 4800
- F +617 5510 4814
- E goldcoast@gta.com.au

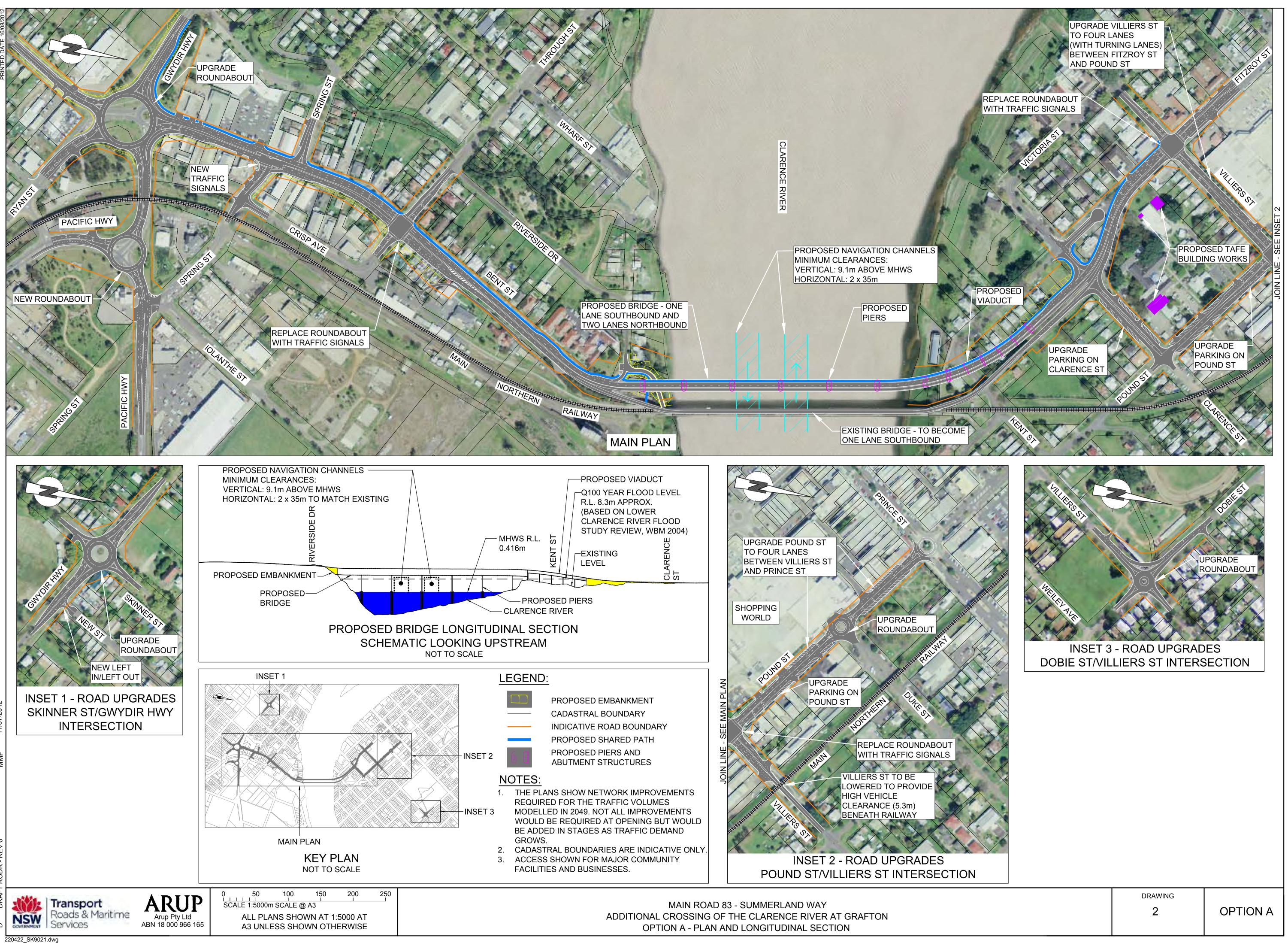
Townsville

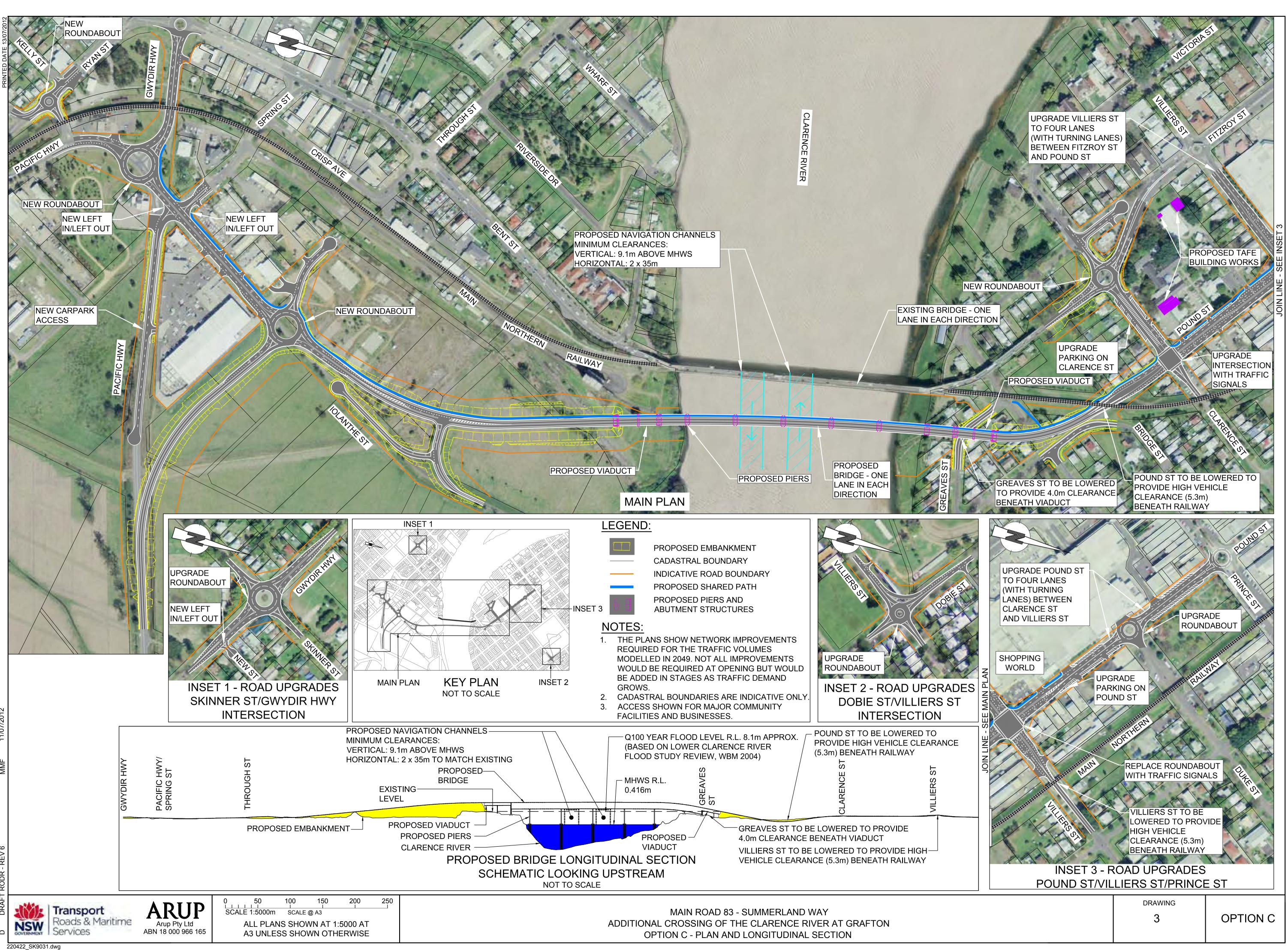
- PO Box 1064 TOWNSVILLE QLD 4810
- P +617 4722 2765 F +617 4722 2761
- E townsville@gta.com.au

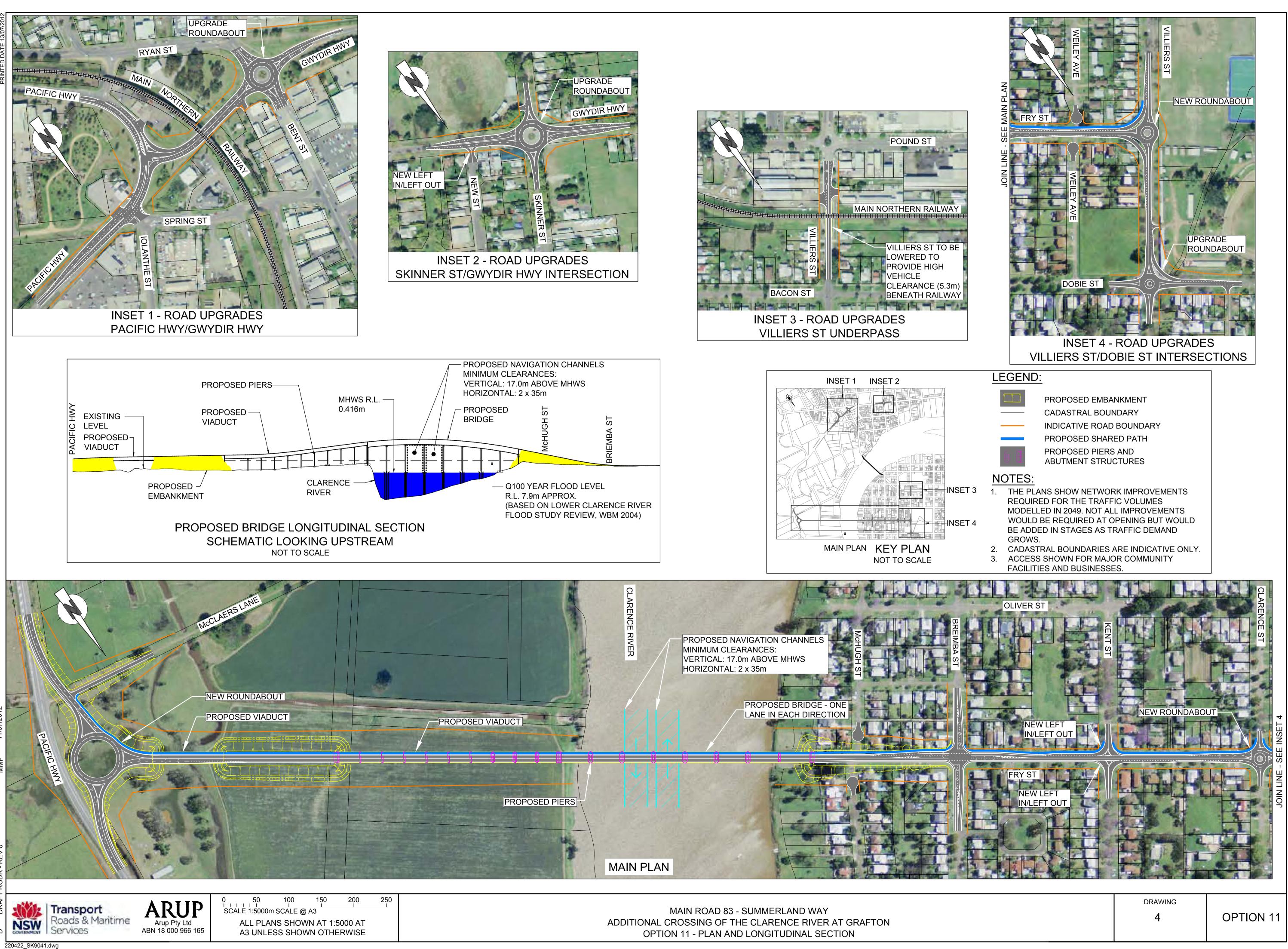
GTAconsultants



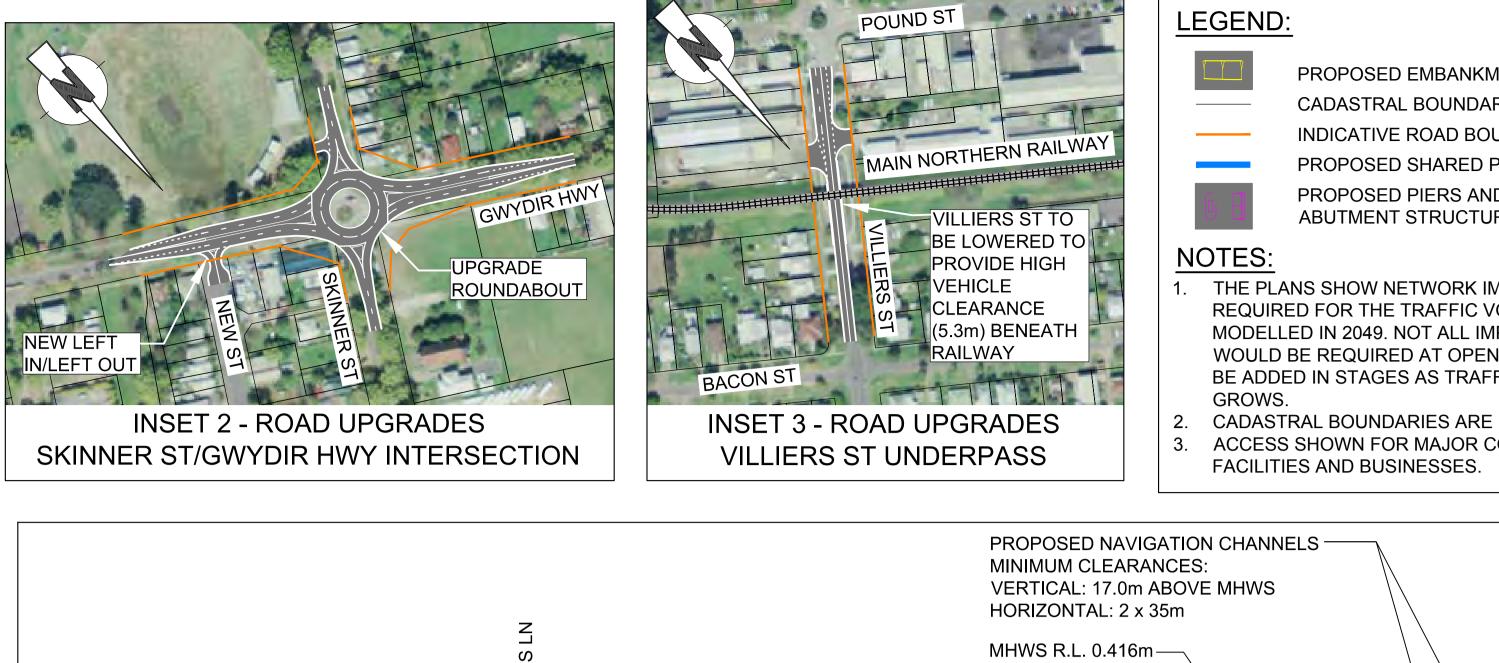
Appendix B

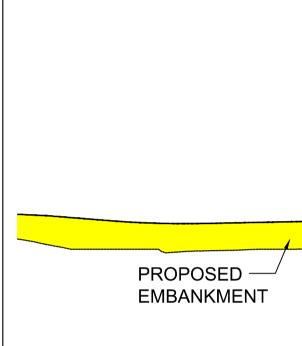

Route Options

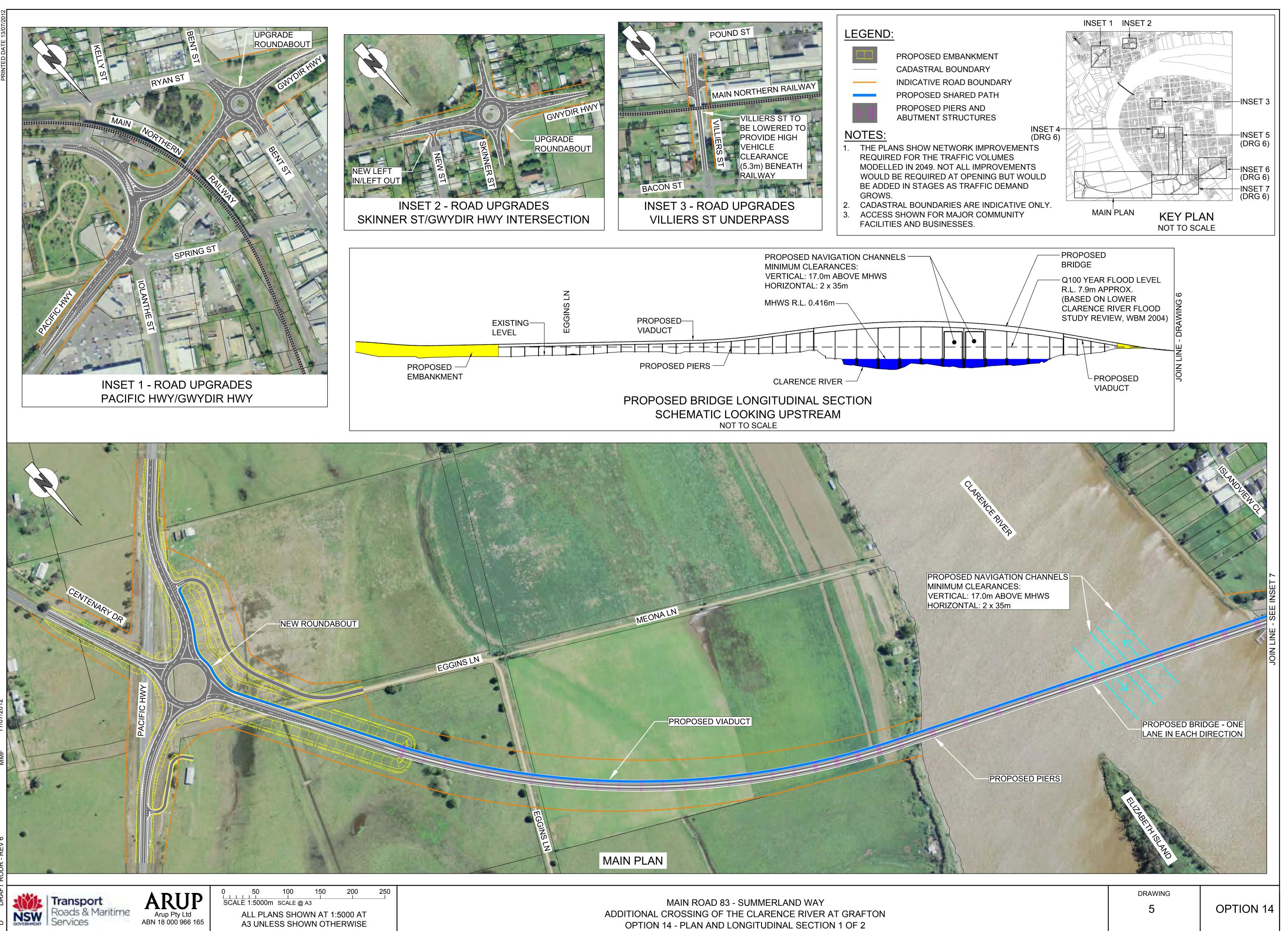



220422_SK9011.dwg

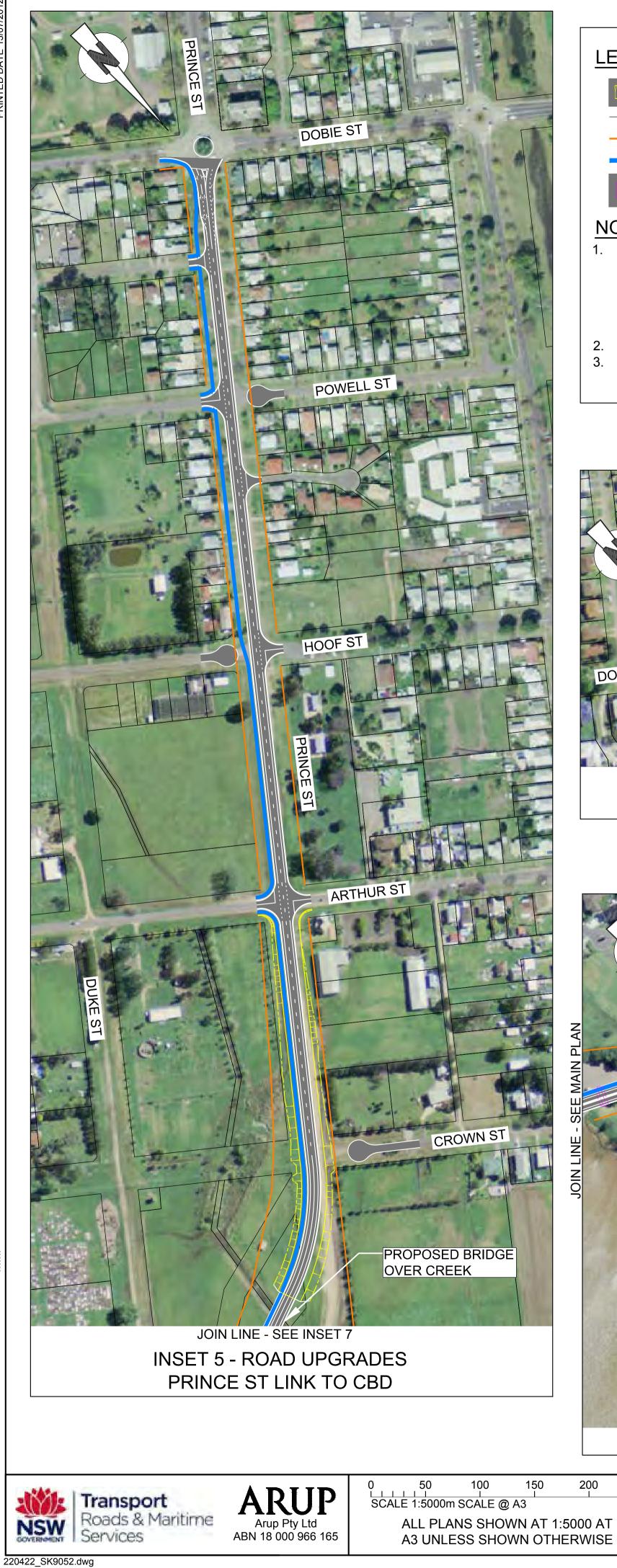
OPTION E - PLAN AND LONGITUDINAL SECTION

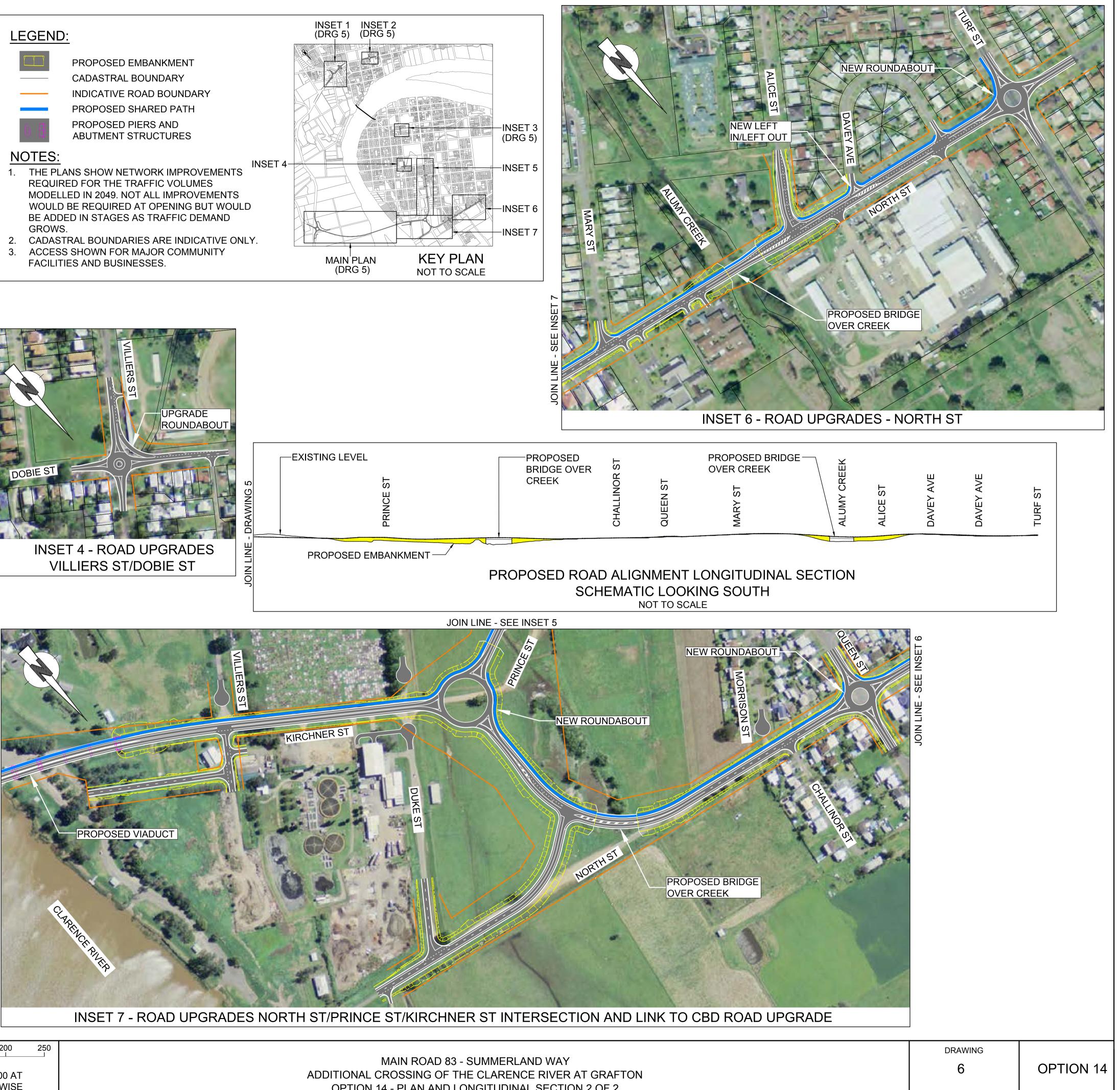


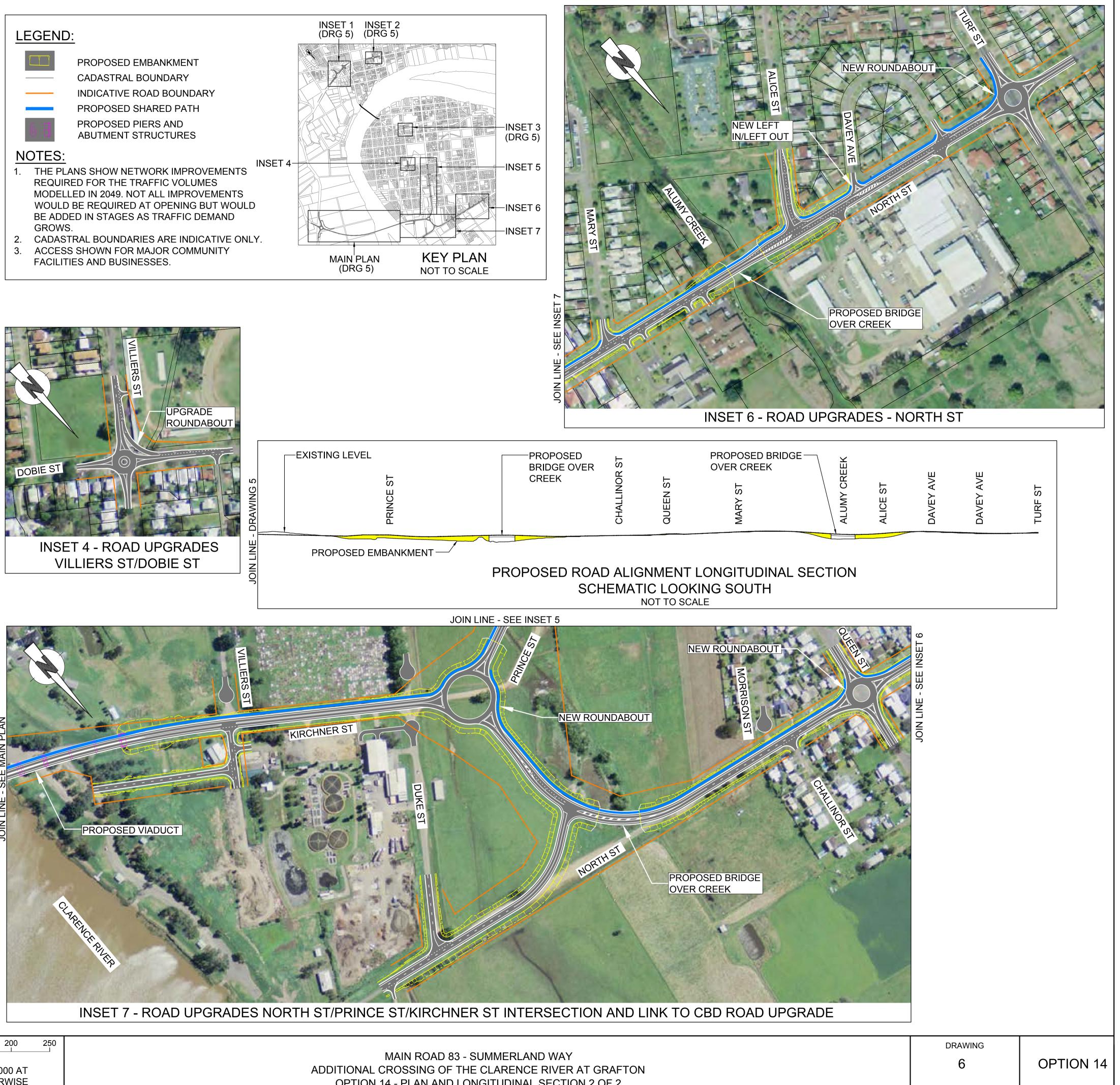


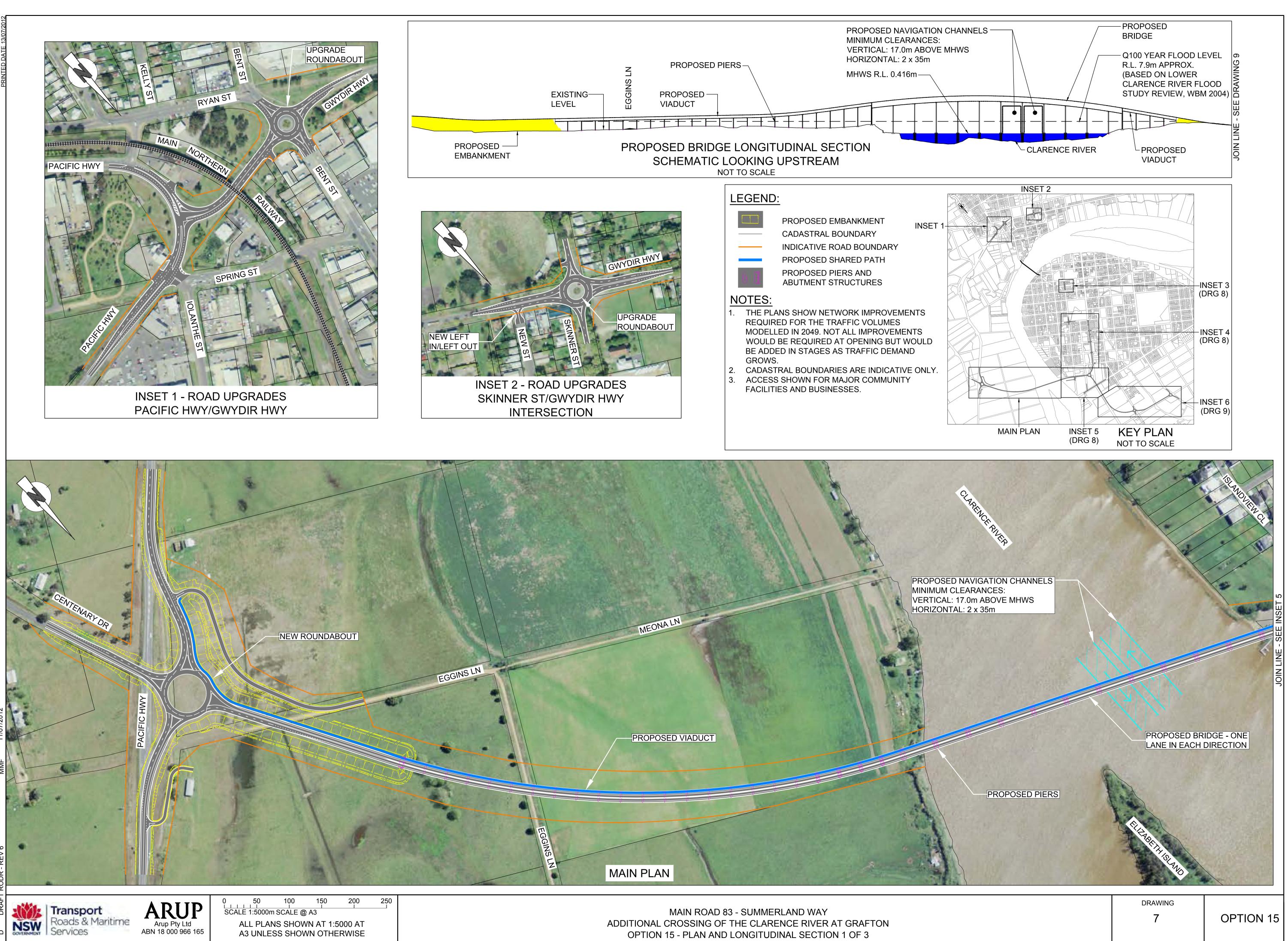


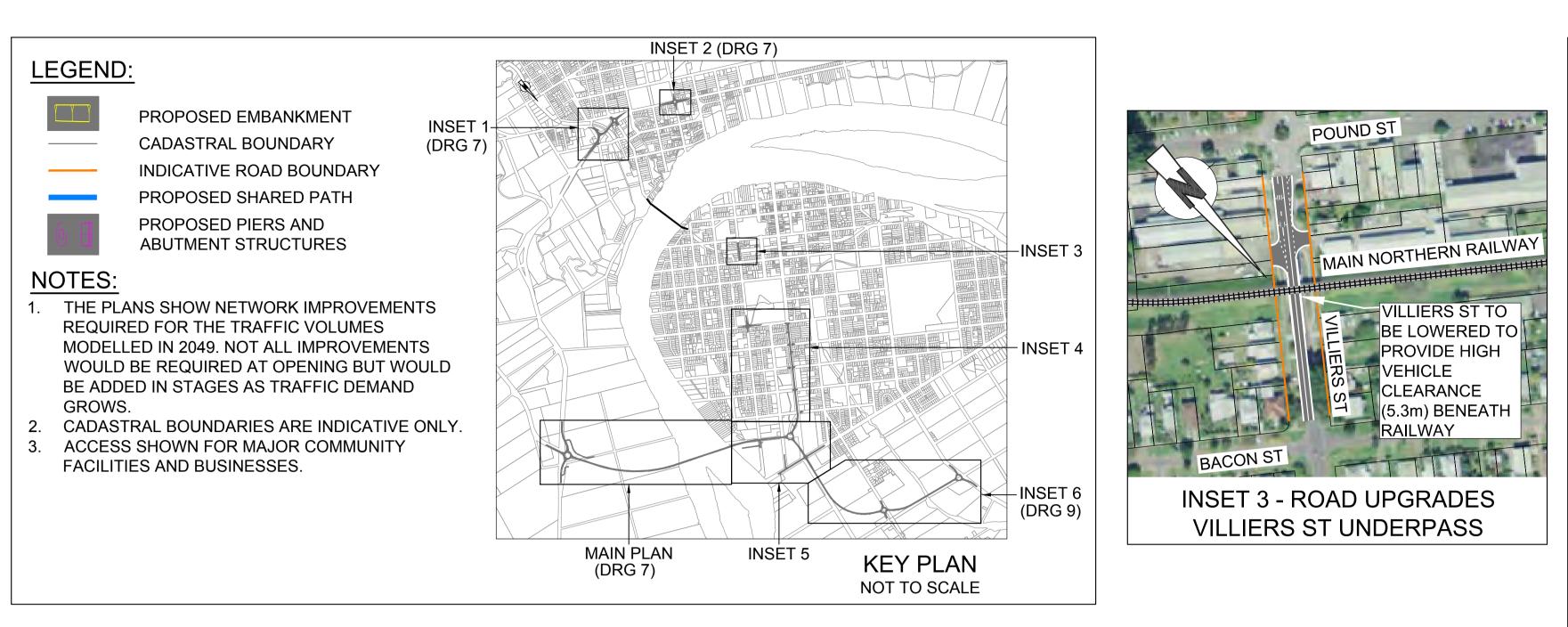
220422_SK9051.dwg

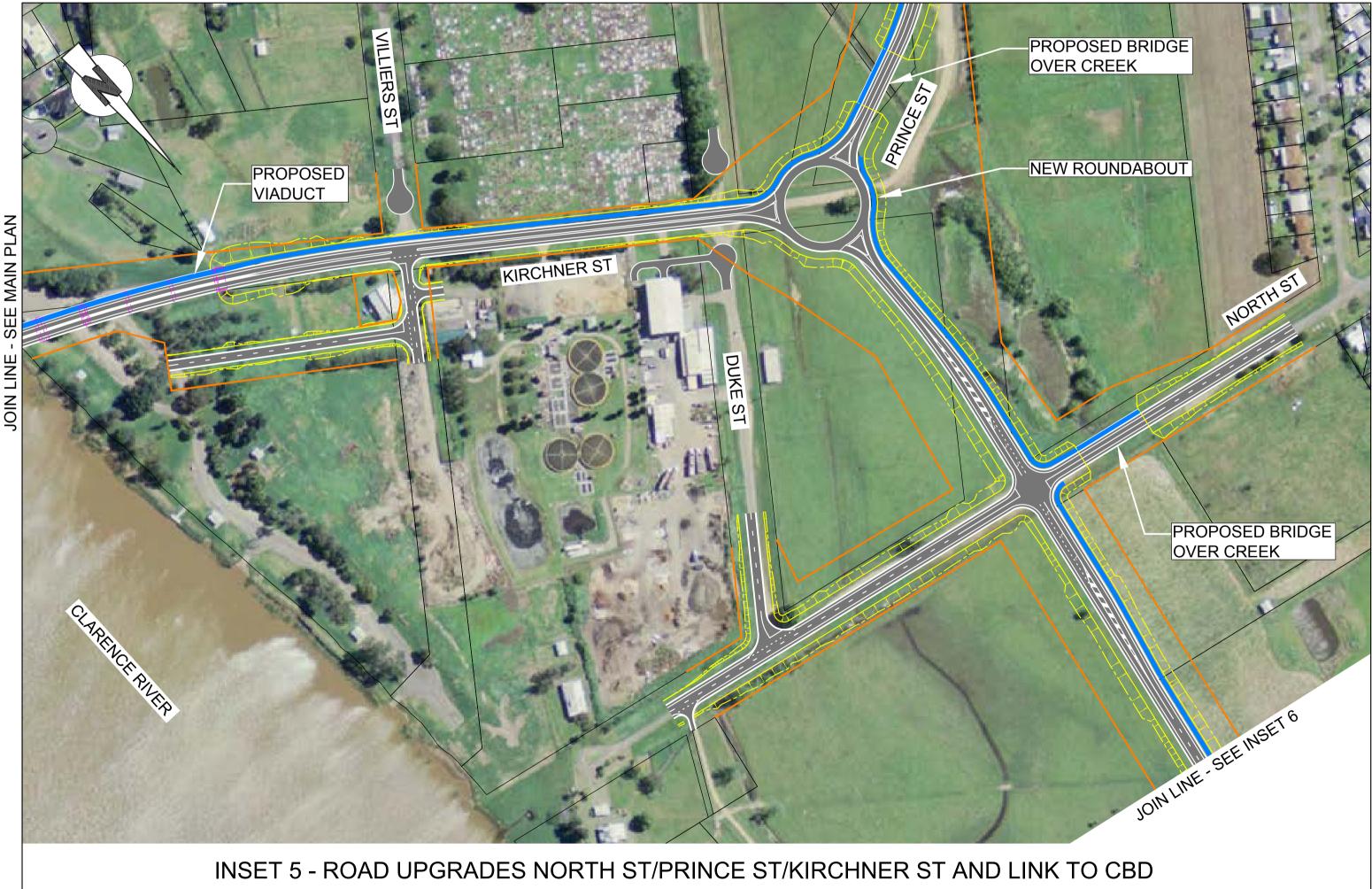


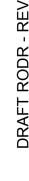




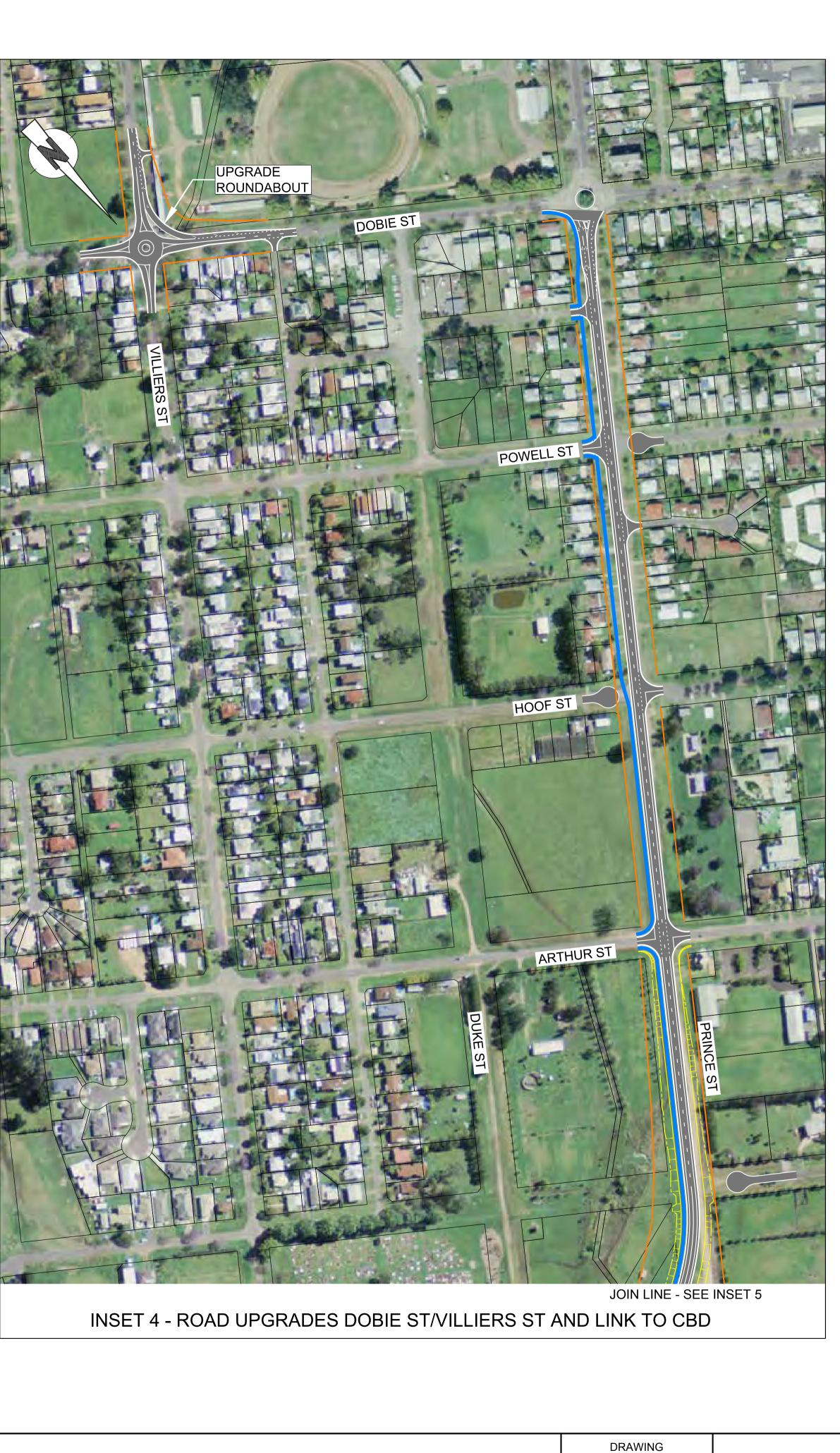

- GROWS.



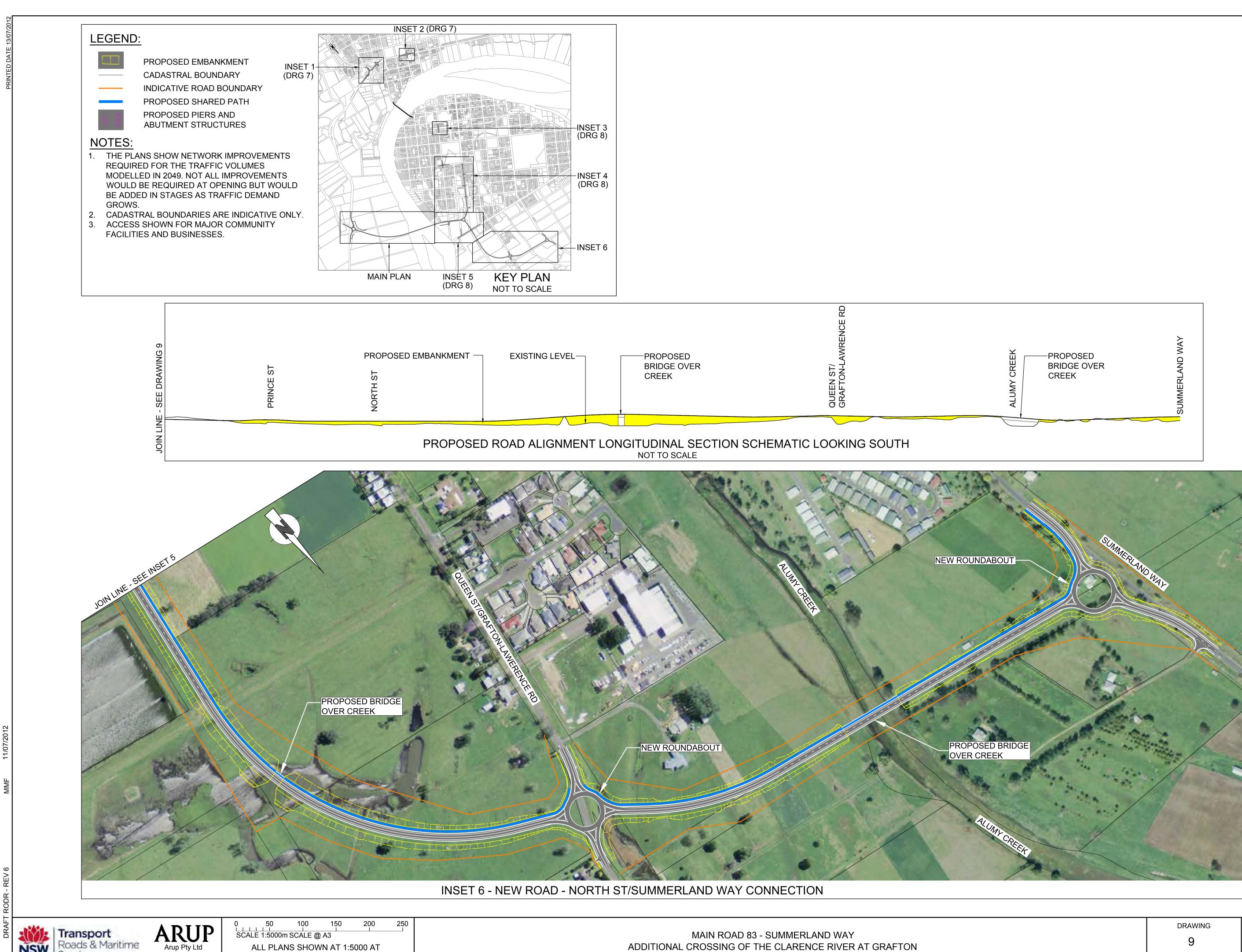

OPTION 14 - PLAN AND LONGITUDINAL SECTION 2 OF 2


BRIDGE	ALUMY CREEK	ALICE ST	DAVEY AVE	DAVEY AVE	TURF ST

220422_SK9061.dwg


220422_SK9062.dwg

Transport Roads & Maritime NSW Services


Arup Pty Ltd ABN 18 000 966 165

200 50 100 150 250 SCALE 1:5000m SCALE @ A3 ALL PLANS SHOWN AT 1:5000 AT A3 UNLESS SHOWN OTHERWISE

JOIN LINE - SEE INSET 4

MAIN ROAD 83 - SUMMERLAND WAY ADDITIONAL CROSSING OF THE CLARENCE RIVER AT GRAFTON OPTION 15 - PLAN AND LONGITUDINAL SECTION 2 OF 3

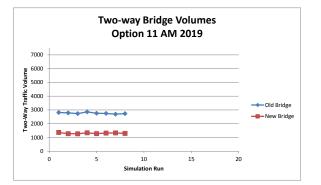
Roads & Maritime NSW Services

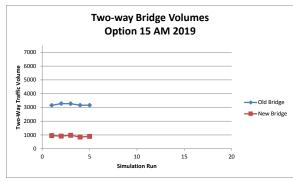
220422_SK9063.dwg

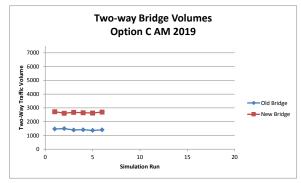
Arup Pty Ltd ABN 18 000 966 165

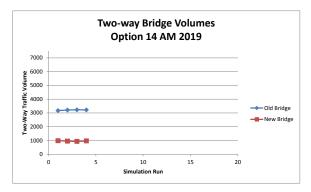
A3 UNLESS SHOWN OTHERWISE

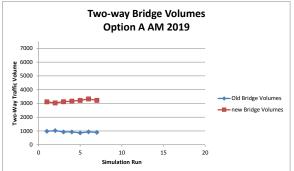
DRAWING	
9	OPTION 1

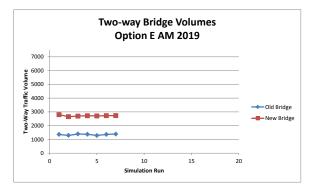

Appendix C

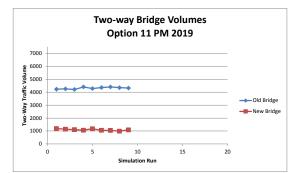


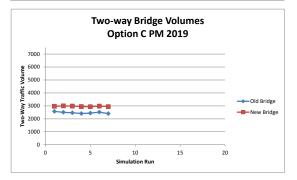

Appendix C

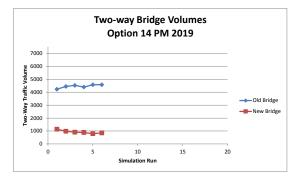

Equilibrium Assignment Results

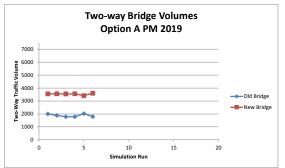


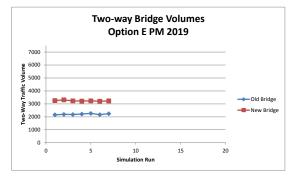


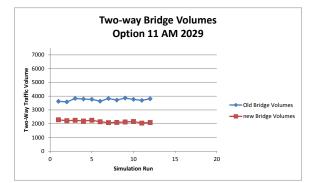


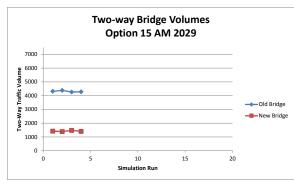


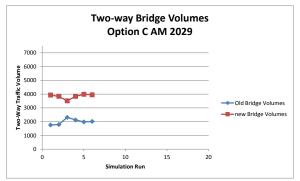


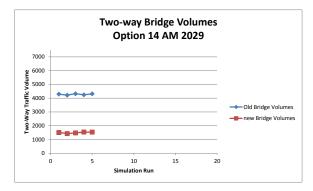


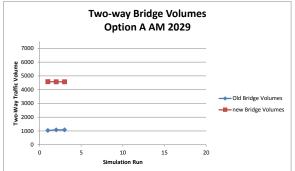


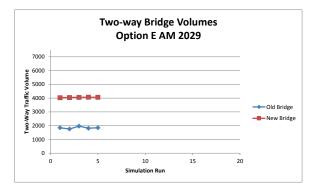


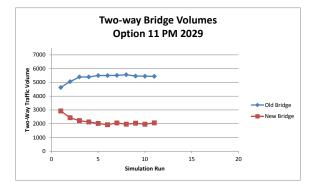


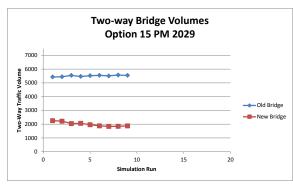


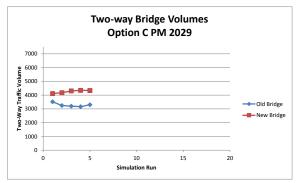


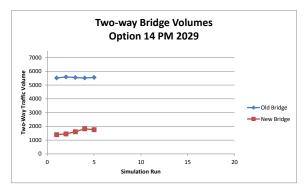


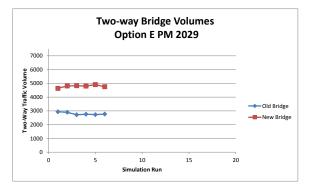


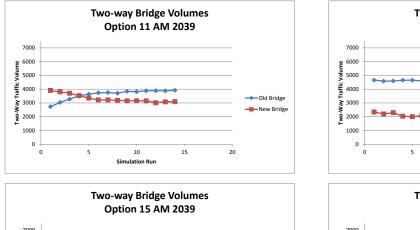


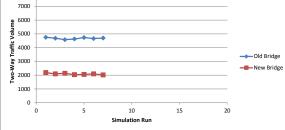


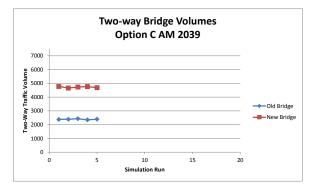


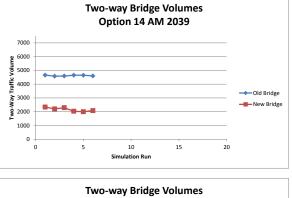


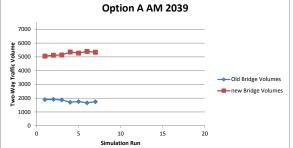


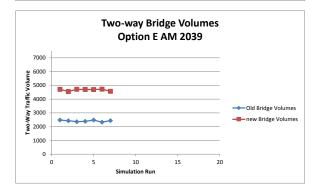


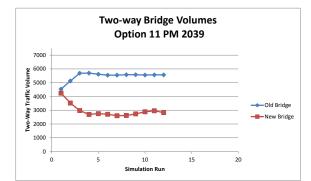


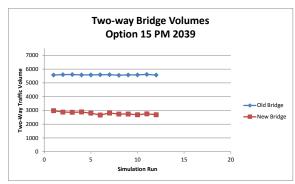


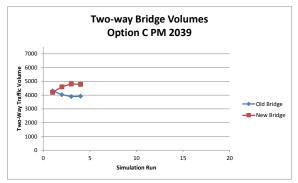


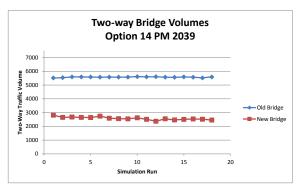


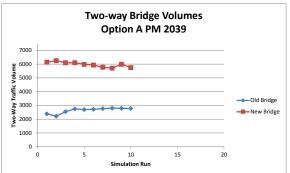


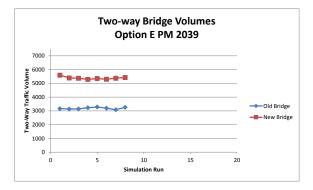


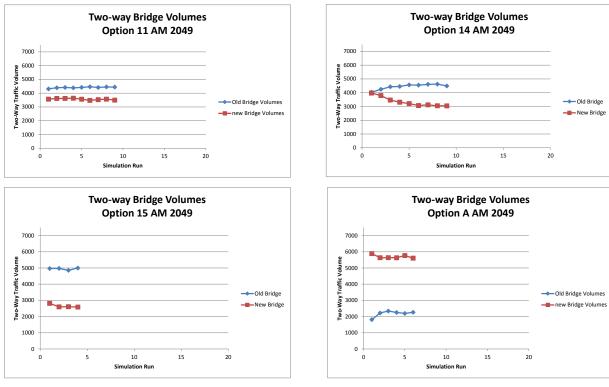


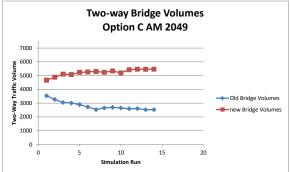


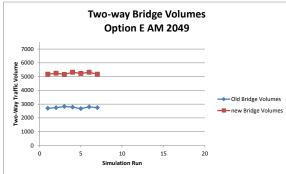


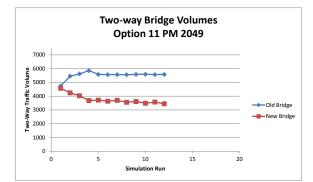


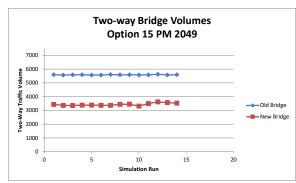


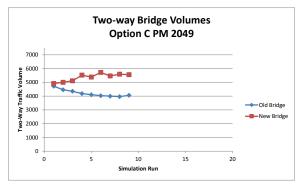


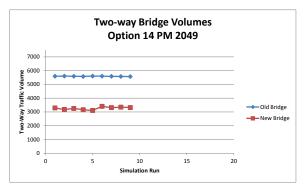


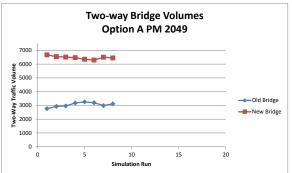


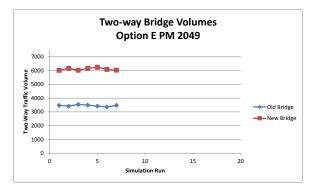


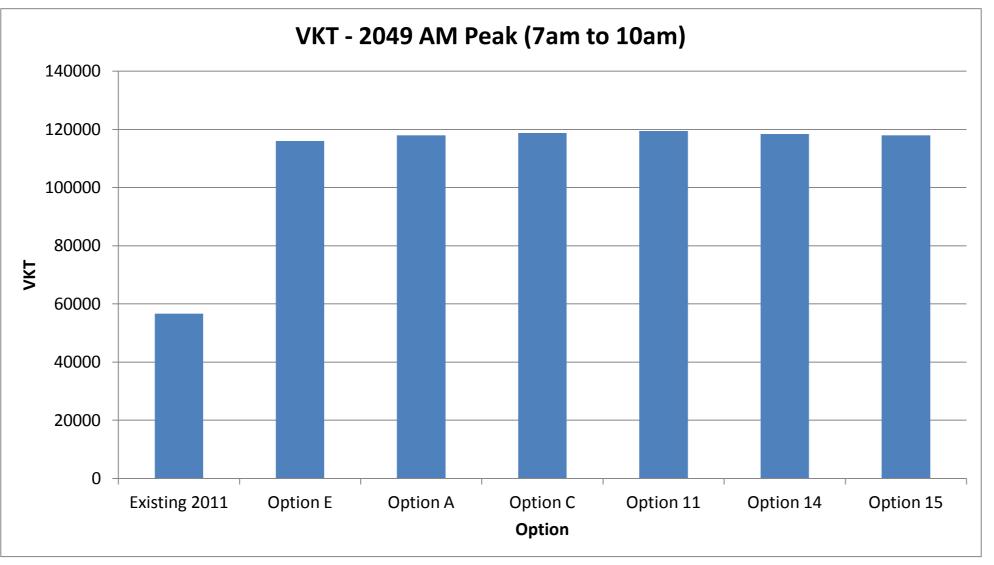


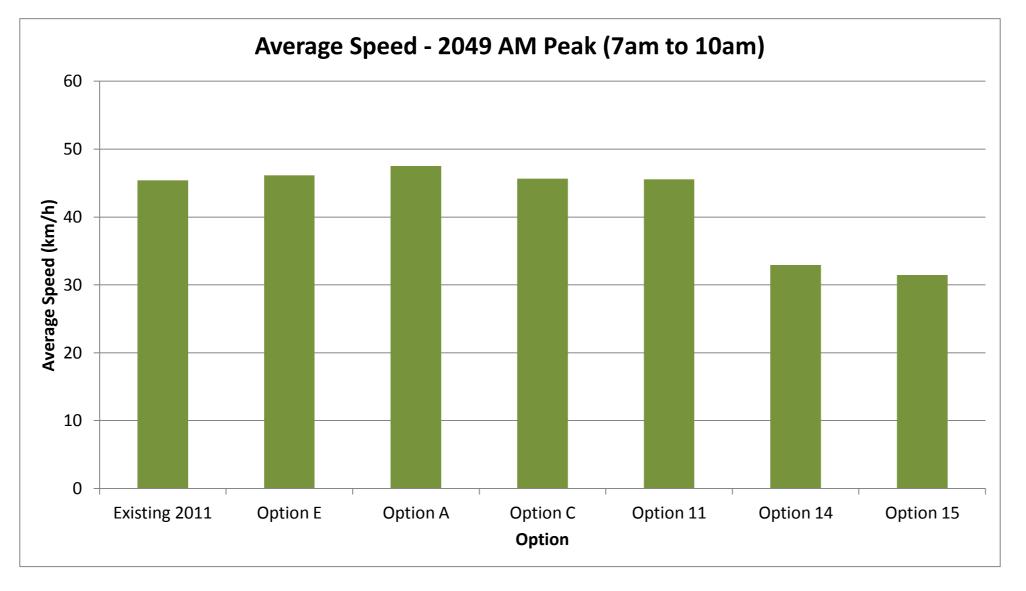


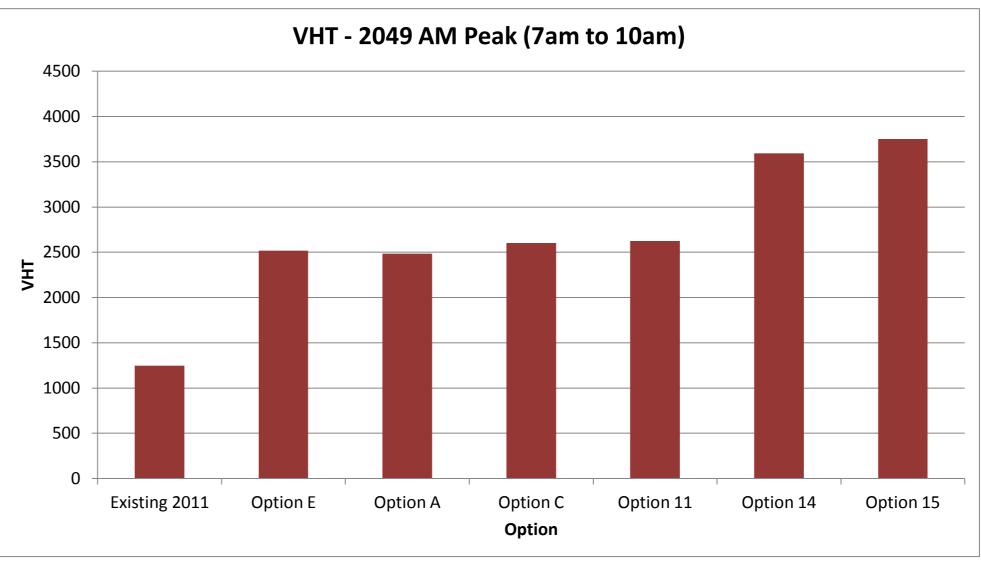

-----Old Bridge

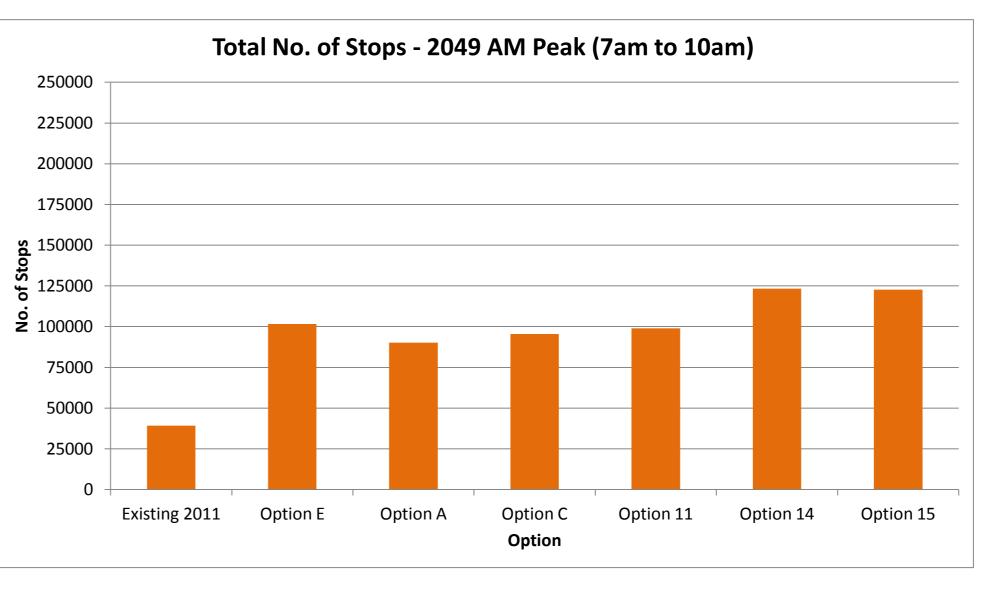

20



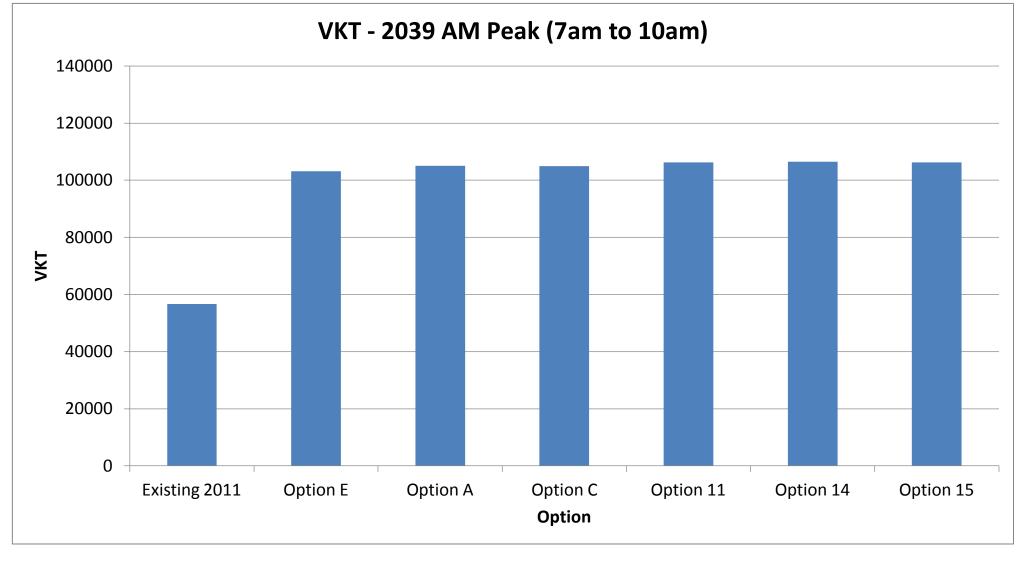


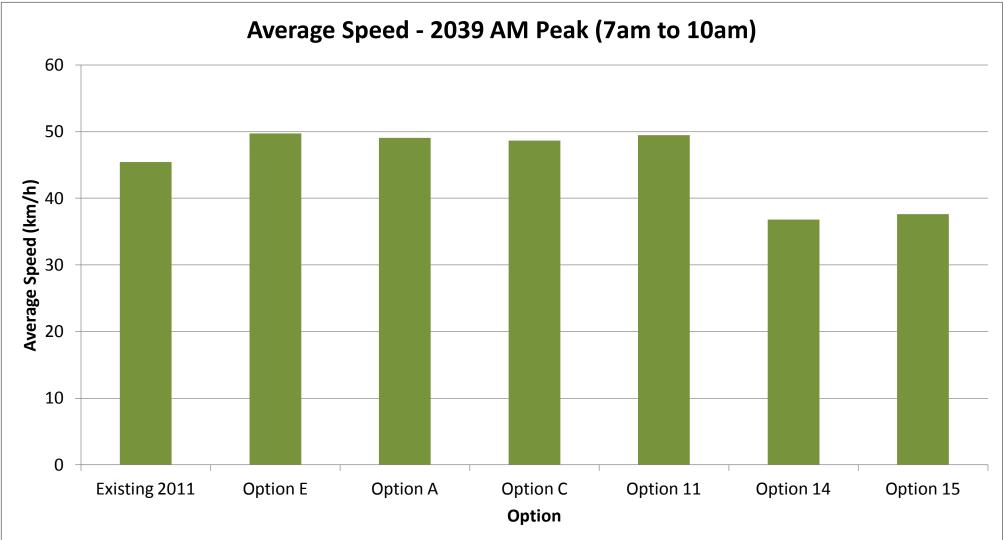

Appendix D

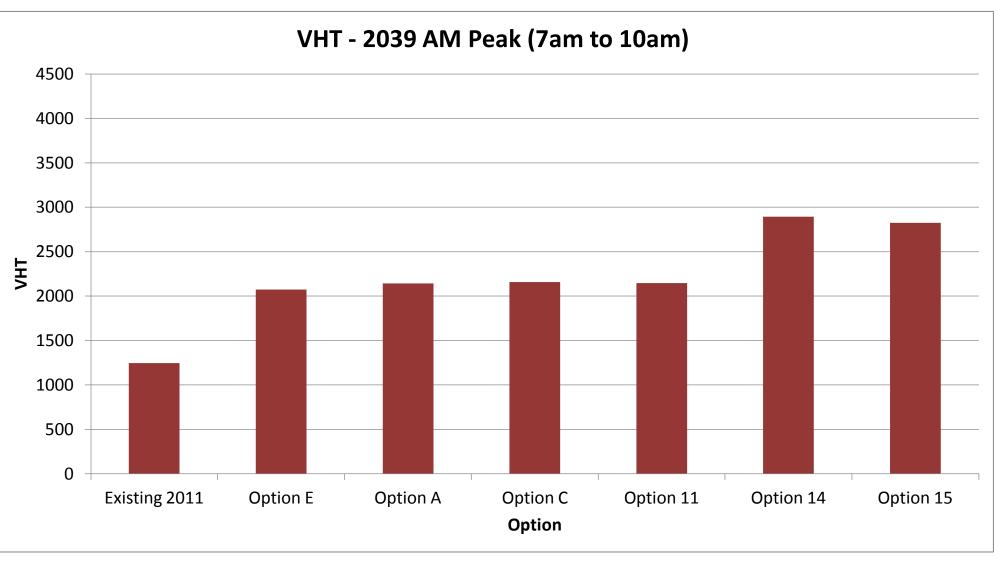

Full Network Results

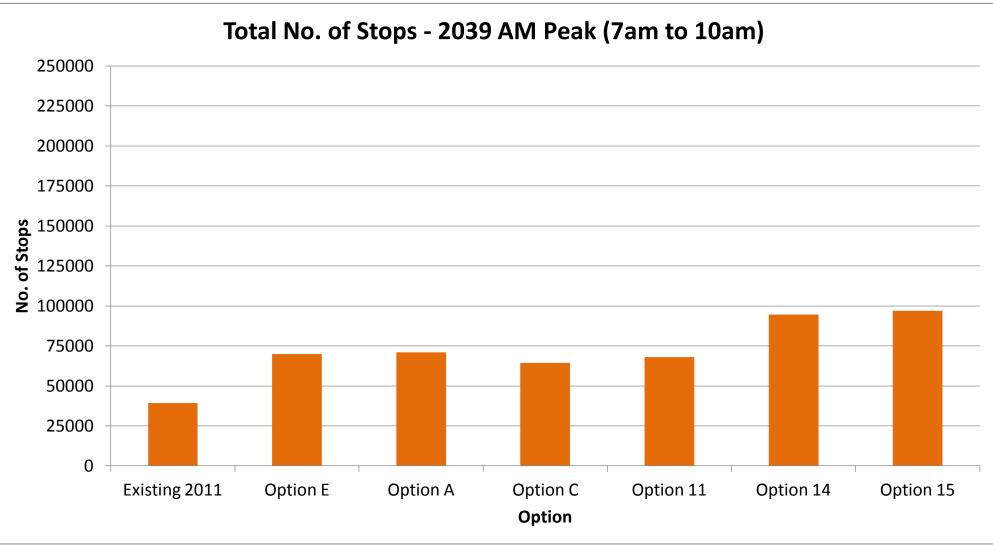


												OP	TION											
Network Statistics	Exis	ting Condition	IS 2011		Do Minimal 204	¥9		Option E 204	Э		Option A 2049)		Option C 2049			Option 11 204	9		Option 14 204	9		Option 15 2049	9
	7-8am	8-9am	9-10am	7-8am	8-9am	9-10am	7-8am	8-9am	9-10am	7-8am	8-9am	9-10am	7-8am	8-9am	9-10am	7-8am	8-9am	9-10am	7-8am	8-9am	9-10am	7-8am	8-9am	9-10am
Total no. of incompleted trips (no. of vehicles)	448	496	324				721	1032	647	736	954	668	789	1094	656	720	1141	663	858	1462	1140	894	1555	1115
Total no. of completed trips (no. of vehicles)]	1]	0	0	0	0	0	0
- Cars	/.222	6645	5287				0086	11225	022/	9065	11/.02	0220	9015	1121/	9/ 01	9106	11229	9378	8883	10707	9348	8926	10544	9561
- Light	355	555	450				745	917	767	737	936	751	743	956	779	766	947	787	750	882	731	728	863	739
- Heavy	85	115	103				141	128	134	139	145	118	144	151	118	151	144	125	144	134	115	131	128	118
TOTAL	4772	7315	5840				9972	12381	10235	9940	12485	10098	9902	12422	10298	10023	12320	10290	9776	11723	10195	9785	11535	10418
Average vehicle KM travelled per vehicle (km/veh) per completed trip	2.9	3.0	3.1				3.4	3.3	3.4	3.5	3.4	3.5	3.5	3.4	3.5	3.6	3.4	3.5	3.7	3.4	3.5	3.6	3.4	3.6
Average travel time per vehicle (min/veh) per completed trip	3.5	4.2	3.9				4.2	4.5	4.4	4.3	4.5	4.3	4.3	4.8	4.5	4.2	4.6	4.9	4.5	5.6	7.5	4.5	5.5	7.7
Average speed (km/h)	49.1	42.2	47.2				48.3	43.7	47.2	49.2	45.3	48.8	48.4	42.5	47.2	51.1	43.8	43.0	47.4	31.8	26.1	46.6	29.4	25.4
Average delay per completed trip (sec)	0.1	39.6	16.9				27	52	36	27	49	30	27	60	37	13	45	61	26	107	210	27	100	220
Freeflow Time (hrs)	296.0	456.0	370.8				661	800	668	664	811	658	668	821	687	690	824	697	702	797	717	695	776	735
Total no. of Stops*]	.]	1	L							<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
- Cars	-60-	40745	9763				21246	(10=0	26222	24257	26724	22242	04755	20640	0 54 04	10-00		22424	007/4	(6000		22/07		() 504
- Light	780	1727	870				2055	2/.07	2188	1822	2002	1882	1866	2//0	2117	1505	2221	2701	2000	2788	2067	1870	2750	2120
- Heavy		560	315				475	571	511	415	518	390	524	702	398	413	568	472	360	499	457	283	428	383
TOTAL	6304	21999	10948				26746	45830	29019	24195	40311	25585	24145	43761	27646	20797	42866	35367	25101	50315	47925	25560	48987	48103
Total Vehicle Kilometres Travelled (VKT)	14698.2	23198.8	18797.2				35805	43685	36566	36623	44909	36497	36415	44732	37589	37348	44543	37574	37762	42422	38222	37367	41174	39398
Total vehicle hours travelled (VHT)	299.4	550.2	398.6				741	1000	774	745	992	748	753	1053	797	732	1017	874	797	1335	1462	802	1401	1548
Unreleased Trips	0	0	0				0	0	0	0	0	0	0	48	0	0	0	0	0	358	304	0	496	320

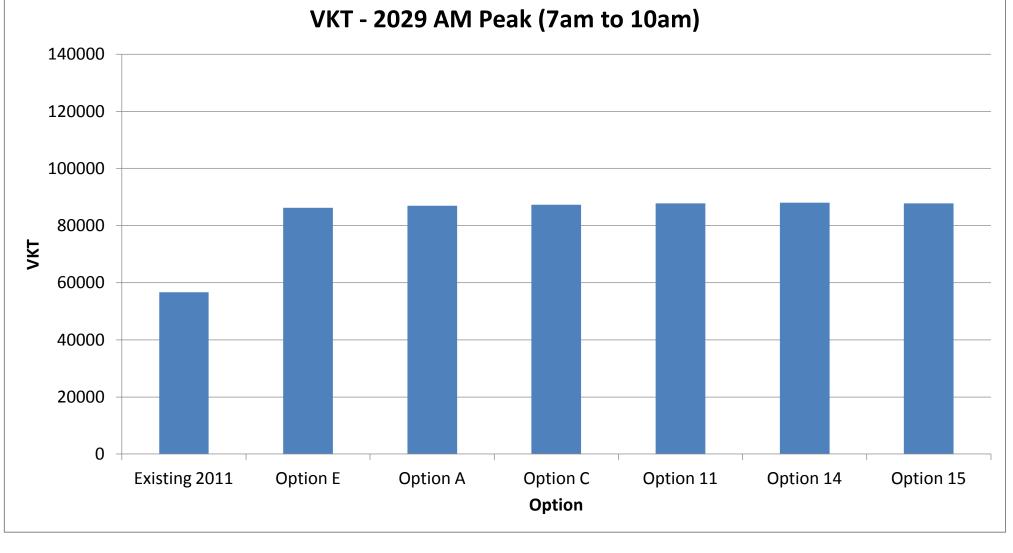


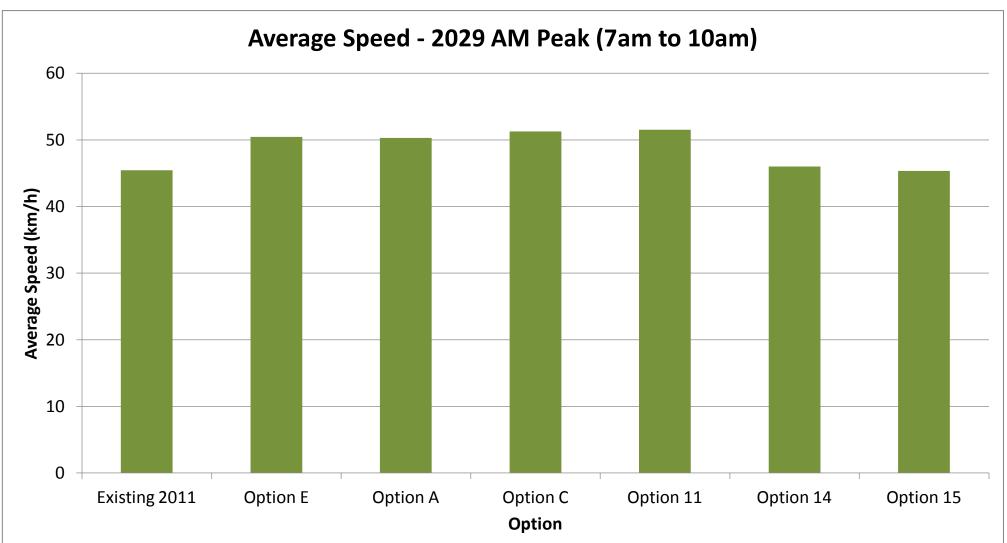


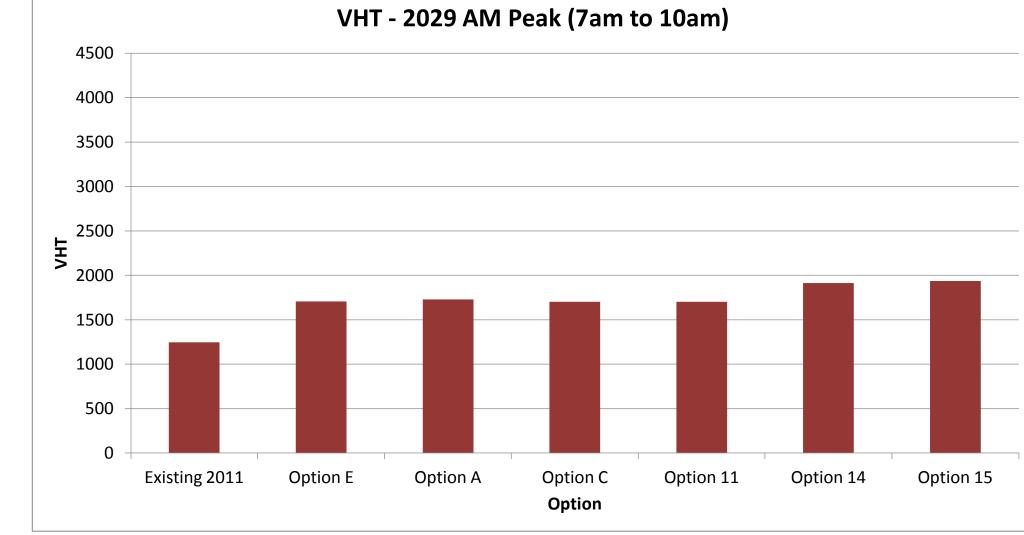


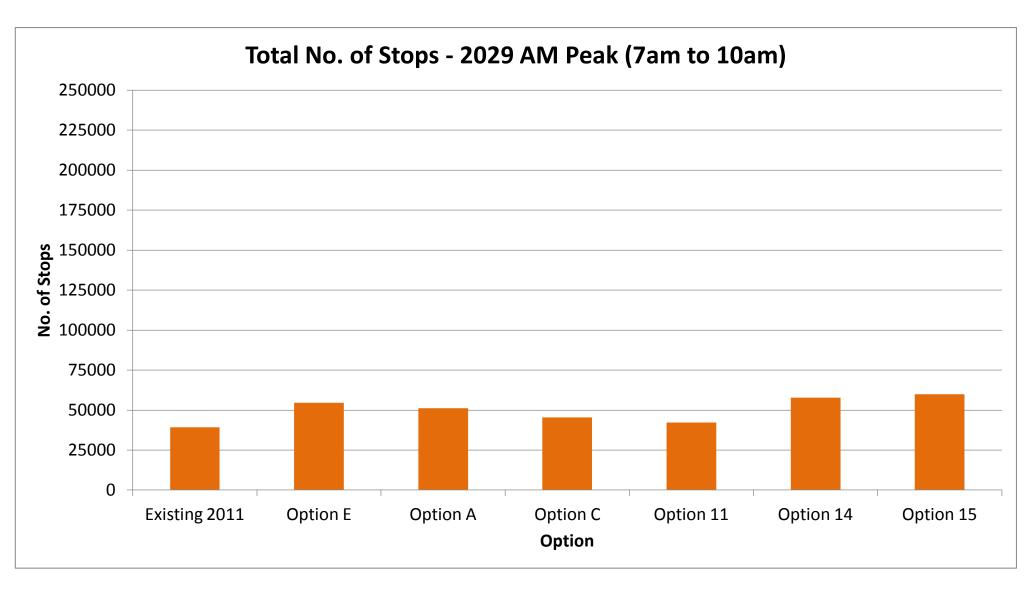


												OP	ΓΙΟΝ											
Network Statistics	Exis	sting Condition	5 2011		Do Minimal 20	39		Option E 2039)		Option A 2039			Option C 2039			Option 11 2039)		Option 14 203	9		Option 15 2039	9
	7-8am	8-9am	9-10am	7-8am	8-9am	9-10am	7-8am	8-9am	9-10am	7-8am	8-9am	9-10am	7-8am	8-9am	9-10am	7-8am	8-9am	9-10am	7-8am	8-9am	9-10am	7-8am	8-9am	9-10am
Total no. of incompleted trips (no. of vehicles)	448	496	324				601	818	599	630	849	558	603	888	567	613	903	558	634	1323	953	646	1293	829
Total no. of completed trips (no. of vehicles)																			0	0	0	0	0	0
- Cars	4332	6645	5287				8200	10576	8514	8192	10604	8579	8162	10551	8641	8168	10/88	8560	8077	10165	8652	8128	10161	8772
- Light	355	555	450				686	867	716	686	890	720	688	857	716	686	878	706	691	856	700	672	846	726
- Heavy	85	115	103				178	132	120	143	138	122	138	139	118	142	136	111	151	140	120	146	126	113
TOTAL	4772	7315	5840				9024	11575	9350	9020	11632	9421	8987	11546	9475	8996	11502	9386	8919	11161	9472	8946	11134	9612
Average vehicle KM travelled per vehicle (km/veh) per completed trip	2.9	3.0	3.1				3.3	3.3	3.3	3.4	3.3	3.4	3.4	3.3	3.4	3.4	3.4	3.4	3.5	3.3	3.5	3.5	3.3	3.4
Average travel time per vehicle (min/veh) per completed trip	3.5	4.2	3.9				3.9	4.0	3.9	4.1	4.1	4.0	4.0	4.1	4.2	3.9	4.2	4.2	4.0	4.6	6.9	4.1	4.7	6.7
Average speed (km/h)	49.1	42.2	47.2				50.3	48.7	50.5	49.5	47.9	50.0	51.0	47.6	47.8	52.7	47.5	49.0	51.5	38.1	28.1	51.1	38.6	29.5
Average delay per completed trip (sec)	0.1	39.6	16.9				17	25	17	23	32	23	15	29	31	5	27	22	6	52	182	9	54	170
Freeflow Time (hrs)	296.0	456.0	370.8				575	727	593	578	730	596	581	736	608	602	752	618	610	742	652	610	737	657
Total no. of Stops*												1							<u> </u>	0	0	0	0	0
- Cars	5605	19715	9763				1606/	27648	18562	17265	28035	10001	14851	25509	17975	12980	28910	19671	12256	34986	39166		35386	
- Light	480	1724	870				1523	2327	1662	1425	2407	1676	1256	2125	1557	1159	2408	1702	1052	2802	3085	1153	2983	3193
- Heavy	219	560	315				426	483	398	<u>3</u> 68	450	345	360	449	351	332	450	314	247	452	488	215	321	423
TOTAL	6304	21999	10948				18913	30458	20622	19059	30891	21112	16467	28082	19882	14472	31768	21688	13554	38240	42739	14890	38690	43371
Total Vehicle Kilometres Travelled (VKT)	14698.2	23198.8	18797.2				31165	39635	32332	31730	40336	32975	31637	40180	33156	32439	40614	33159	32536	39349	34623	32483	39050	34770
Total vehicle hours travelled (VHT)	299.4	550.2	398.6				619	814	640	640	842	660	621	844	693	615	855	676	632	1033	1231	636	1011	1179
Unreleased Trips	0	0	0				0	0	0	0	0	0	0	4	0	0	25	0	0	47	6	0	8	9

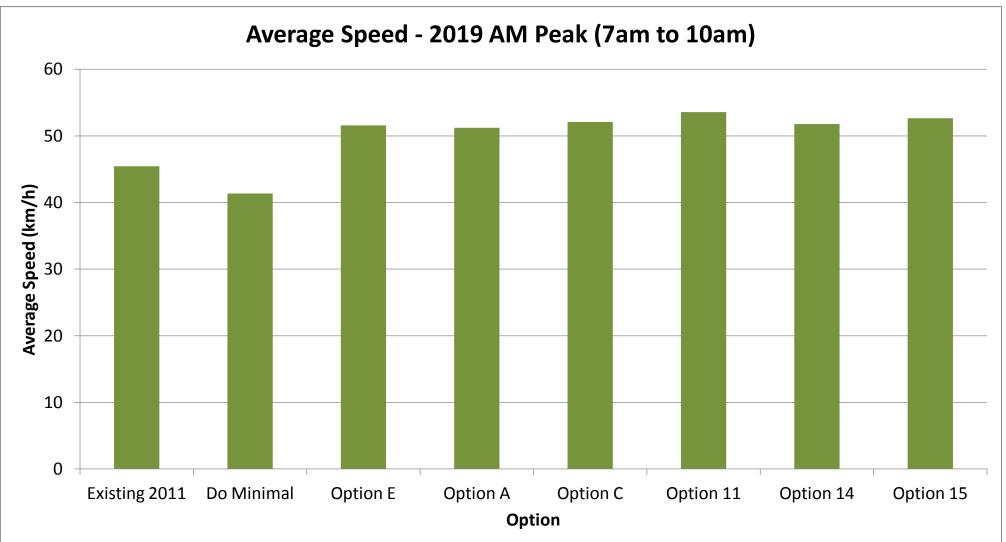


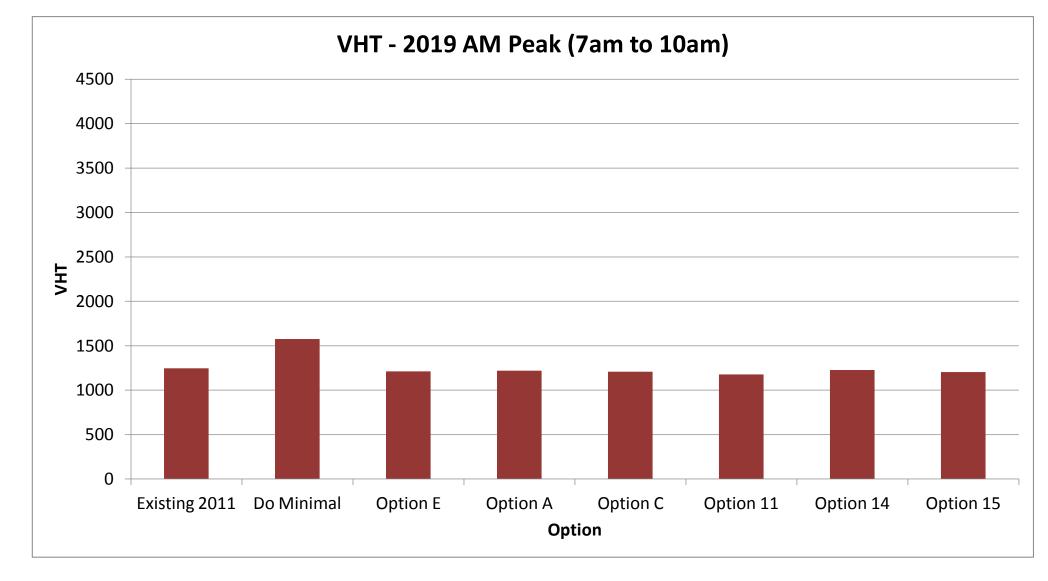


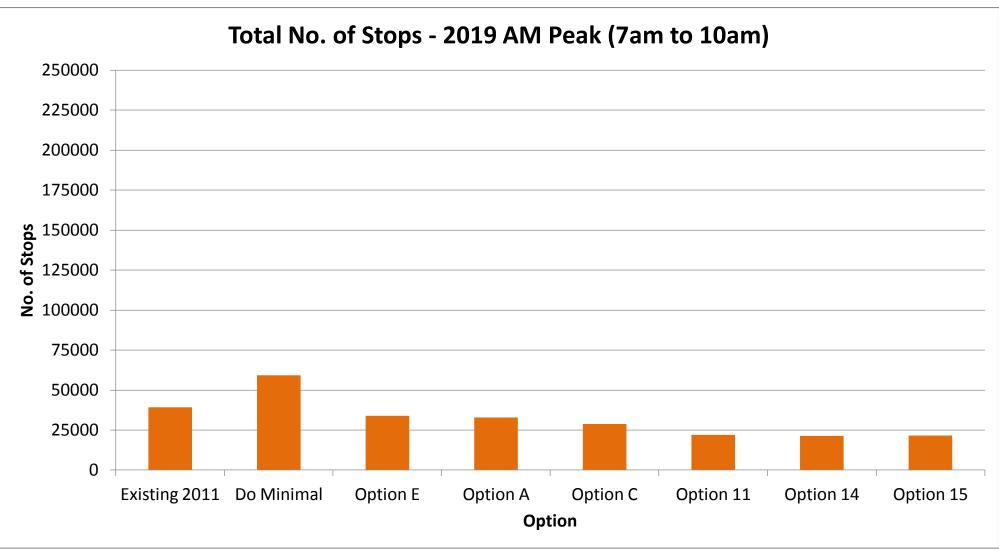




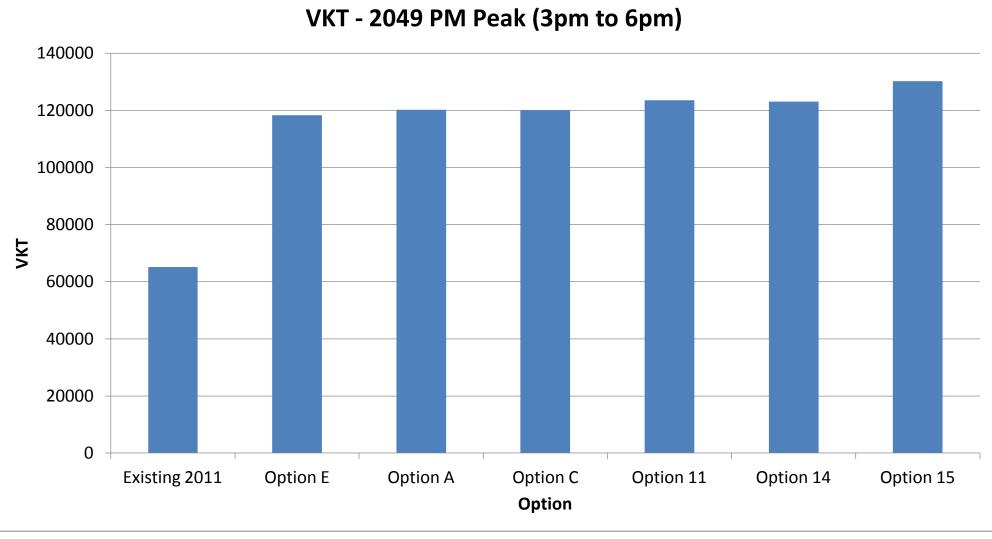
												OPT	ΓΙΟΝ											
Network Statistics	Exis	ting Conditions	2011		Do Minimal 202	29		Option E 2029)		Option A 2029			Option C 2029			Option 11 2029)		Option 14 2029			Option 15 2029	l.
	7-8am	8-9am	9-10am	7-8am	8-9am	9-10am	7-8am	8-9am	9-10am	7-8am	8-9am	9-10am	7-8am	8-9am	9-10am	7-8am	8-9am	9-10am	7-8am	8-9am	9-10am	7-8am	8-9am	9-10am
Total no. of incompleted trips (no. of vehicles)	448	496	324				566	582	483	553	609	495	558	603	488	583	601	475	636	743	485	605	771	491
Total no. of completed trips (no. of vehicles)																0	0	0		0	0	0	0	0
- Cars	4332	6645	5287				6981	<u> </u>	7133	6997	9024	7136	6949	9003	7127	6949	9050	7156	6894	8946	7252	6963	88 <u>5</u> 0	7243
- Light	255	555	450				585	757	602	572	757.	572	502	729	599	588	748	<u>595</u>	<u>583</u>	754	574	<u>59</u> 3	<u>715</u>	609
- Heavy	85	115	103				121	127	118	134	137	112	132	138	114	132	139	112	122	135	119	128	140	114
TOTAL	4772	7315	5840				7696	9959	7853	7703	9914	7822	7673	9870	7840	7669	9937	7862	7599	9834	7945	7684	9705	7966
Average vehicle KM travelled per vehicle (km/veh) per completed trip	2.9	3.0	3.1				3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
Average travel time per vehicle (min/veh) per completed trip	3.5	4.2	3.9				3.8	3.9	3.8	3.9	4.0	3.8	3.8	3.9	3.8	3.8	3.9	3.7	3.9	4.4	4.4	3.9	4.4	4.5
Average speed (km/h)	49.1	42.2	47.2				50.4	49.8	51.4	50.3	49.5	51.2	51.3	50.7	52.0	52.3	49.9	52.9	50.8	43.7	44.8	50.4	42.9	44.1
Average delay per completed trip (sec)	0.1	39.6	16.9				15	21	14	19	25	17	12	16	11	3	15	2	6	38	35	7	42	44
Freeflow Time (hrs)	296.0	456.0	370.8				483	613	485	481	612	484	489	618	494	504	637	504	508	642	521	511	633	523
Total no. of Stops*													L	L		0	<u> </u>	0		<u> </u>	<u>0</u>	0	<u>0</u>	0
- Cars	5605	19715	9763						12015		19890	12/86	11256	1787/	11780	9642	18419	9966	9999	26589	15995	10706	27127	16757
- Light	480	1724	870				1190	1835	1178	1112	1676	1116	1008	1518	1049	871	1582	884	878	2225	1201	933	2281	1422
- Heavy	219	560	315				376	433	361	320	369	253	287	347	255	285	335	232	202	<u>3</u> 66	268	189	296	233
TOTAL	6304	21999	10948				15363	23711	15454	14486	21935	14856	12551	19739	13083	10798	20337	11083	11079	29180	17464	11827	29704	18411
Total Vehicle Kilometres Travelled (VKT)	14698.2	23198.8	18797.2				26133	33507	26569	26407	33817	26780	26498	33764	26987	26797	34052	26897	26828	33886	27261	26840	33415	27483
Total vehicle hours travelled (VHT)	299.4	550.2	398.6				518	673	517	525	683	523	516	666	519	512	683	509	528	776	609	532	779	624
Unreleased Trips	0	0	0				0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0

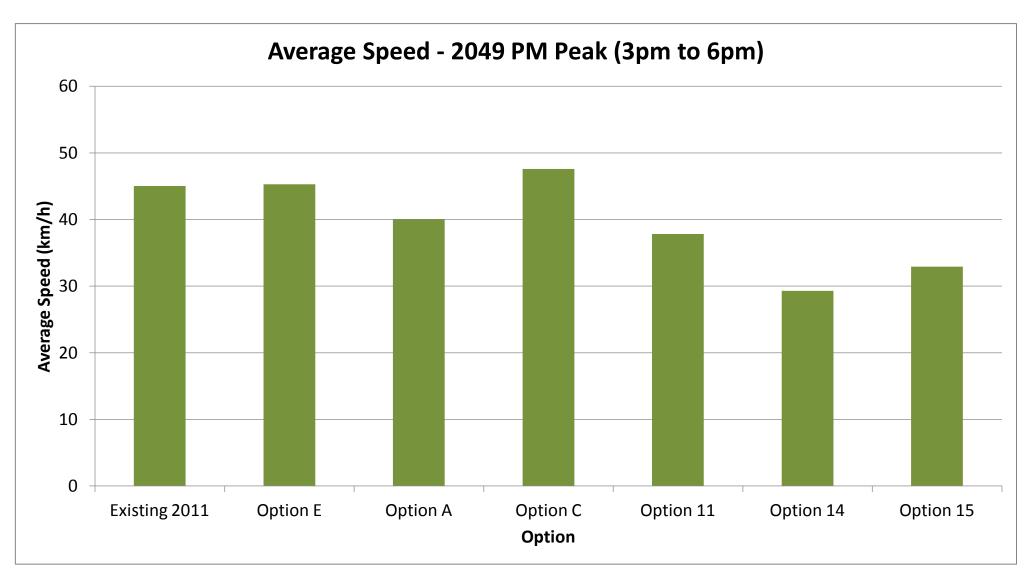


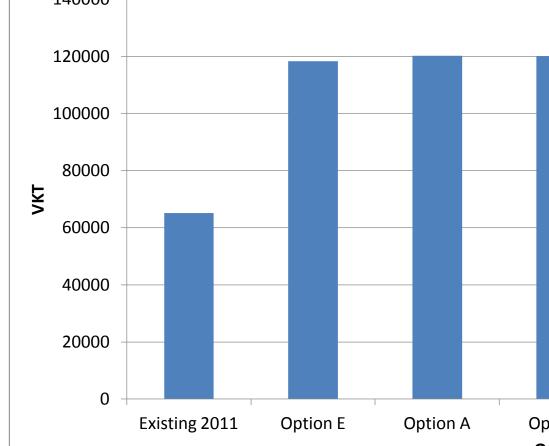


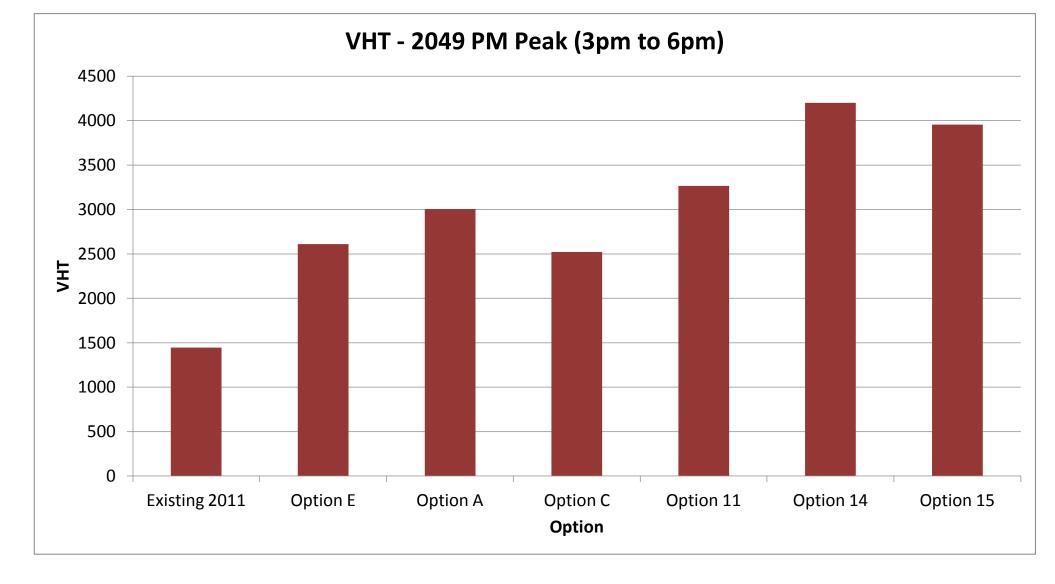


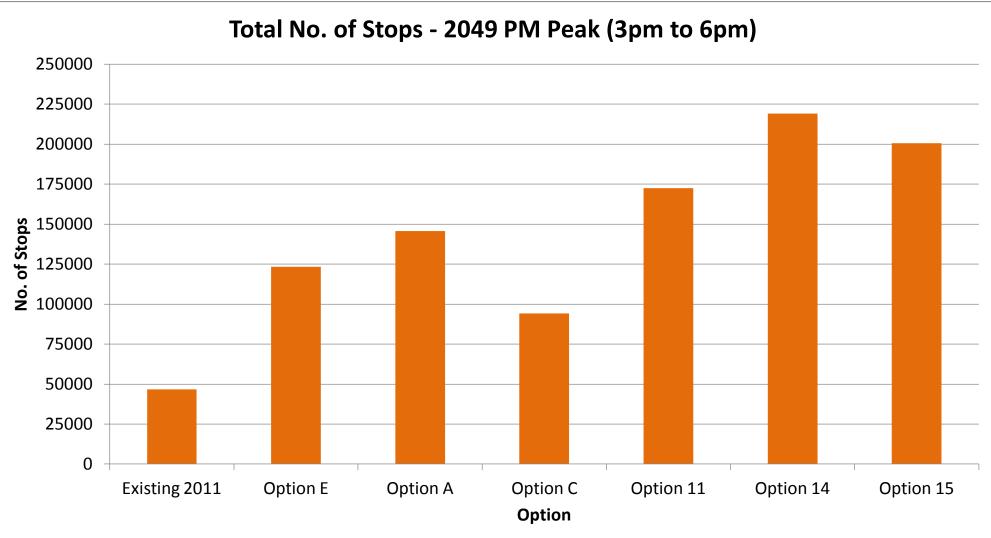
												OPT	ΓΙΟΝ											
Network Statistics	Exis	sting Conditions	5 2011		Do Minimal 201	9		Option E 2019			Option A 2019			Option C 2019			Option 11 2019)		Option 14 2019			Option 15 2019)
	7-8am	8-9am	9-10am	7-8am	8-9am	9-10am	7-8am	8-9am	9-10am	7-8am	8-9am	9-10am	7-8am	8-9am	9-10am	7-8am	8-9am	9-10am	7-8am	8-9am	9-10am	7-8am	8-9am	9-10am
Total no. of incompleted trips (no. of vehicles)	448	496	324	569	653	397	506	425	350	532	420	359	521	432	354	511	402	331	537	420	355	521	405	340
Total no. of completed trips (no. of vehicles)															L	L	0	0	0	0	0	0	0	0
- Cars	4 <u>3</u> 32	6645	5287	4950	<u>7294</u>	<u>5</u> 878	<u>5235</u>	<u>7147</u>	5477	5279	7179	5460	5263	7166	5494	<u>53</u> 01	7141	<u>5472</u>	5320	7129	<u>55</u> 00	<u>5272</u>	7214	5481
- Light	355	555	450	405	621	479	438	606	452	423	584	448	422	591	458	4 <u>39</u>	590	448	426	588	449	429	<u>595</u>	440
- Heavy	85	115	103	82	107	94	80	110	93	79	108	85	78	116	91	81	105	93	74	119	87	83	111	91
TOTAL	4772	7315	5840	5437	8023	6451	5752	7863	6022	5781	7870	5993	5763	7872	6043	5820	7 ⁸ 35	6013	5820	7836	6035	5785	7919	6012
Average vehicle KM travelled per vehicle (km/veh) per completed trip	2.9	3.0	3.1	3.0	3.1	3.2	3.0	3.0	3.1	3.0	3.1	3.0	3.0	3.1	3.0	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1
Average travel time per vehicle (min/veh) per completed trip	3.5	4.2	3.9	3.6	4.7	4.8	3.5	3.6	3.5	3.5	3.6	3.5	3.5	3.6	3.5	3.4	3.5	3.4	3.5	3.6	3.5	3.5	3.5	3.4
Average speed (km/h)	49.1	42.2	47.2	48.7	38.4	40.1	51.5	51.2	52.1	51.1	50.9	51.7	52.0	51.8	52.6	53.6	53.3	54.0	52.3	51.7	51.4	52.6	52.3	53.2
Average delay per completed trip (sec)	0.1	39.6	16.9	2	61	62	9	13	9	13	16	13	7	10	7	0	0	0	0	1	0	0	1	0
Freeflow Time (hrs)	296.0	456.0	370.8	345	517	424	341	456	352	339	451	343	346	462	352	358	468	358	364	481	369	363	482	364
Total no. of Stops*]		1						<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>0</u>	0	0	<u> </u>
- Cars	5605	19715	9763	7304	27679	18288	8325	13260	8881	8289	12865	8533	7144	11499	7438	<u>5297</u>	8952	<u>5475</u>	5220	8715	5320	<u>5230</u>	9052	53/17
- Light	480	1724	870	665	2341	1512	<u>74</u> 1	1207	757	680	1054	728	591	1013	632	492	790	466	436	765	473	<u>457</u>	782	427
- Heavy	219	560	315	258	744	520	241	339	262	195	255	194	173	230	187	168	217	175	110	186	130	104	131	95
TOTAL	6304	21999	10948	8227	30764	20321	9307	14806	9900	9163	14174	9455	7909	12742	8257	5957	9959	6116	5765	9665	5924	5790	9965	5869
Total Vehicle Kilometres Travelled (VKT)	14698.2	23198.8	18797.2	17258	26390	21531	18416	24840	19218	18545	24914	18947	18700	25143	19174	19029	24929	19086	19003	25272	19388	18964	25307	19103
Total vehicle hours travelled (VHT)	299.4	550.2	398.6	354	686	537	358	485	369	363	489	367	359	486	365	355	468	353	363	489	377	361	484	359
Unreleased Trips	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

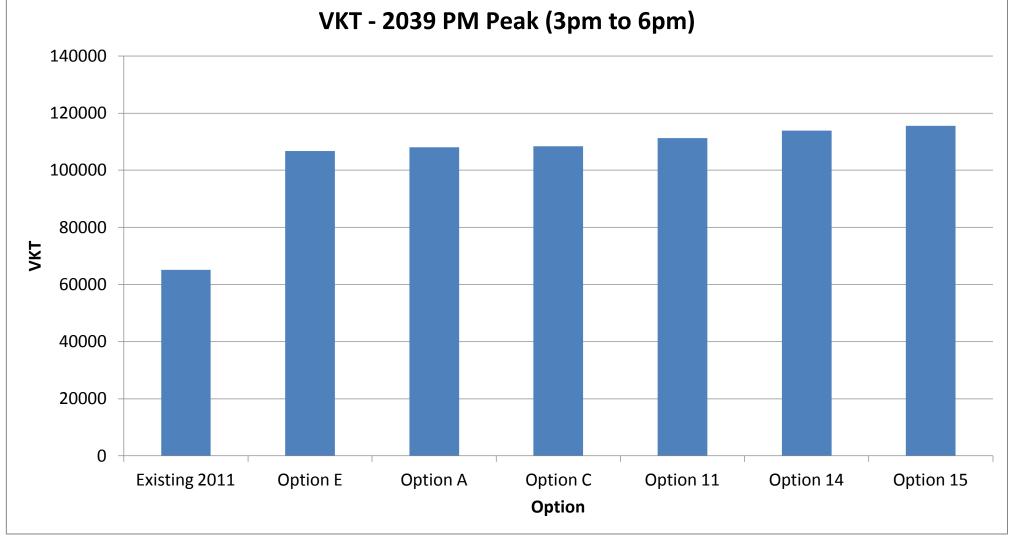


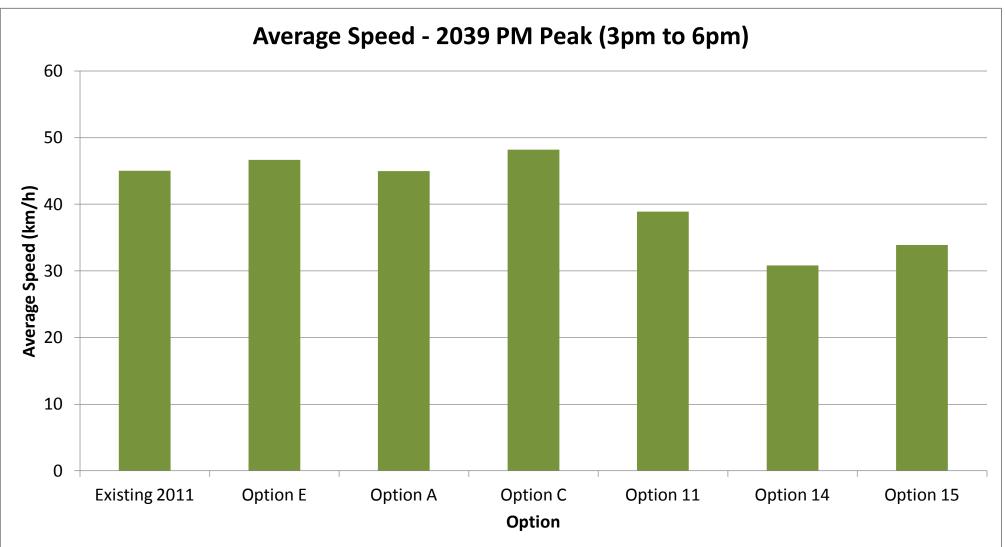


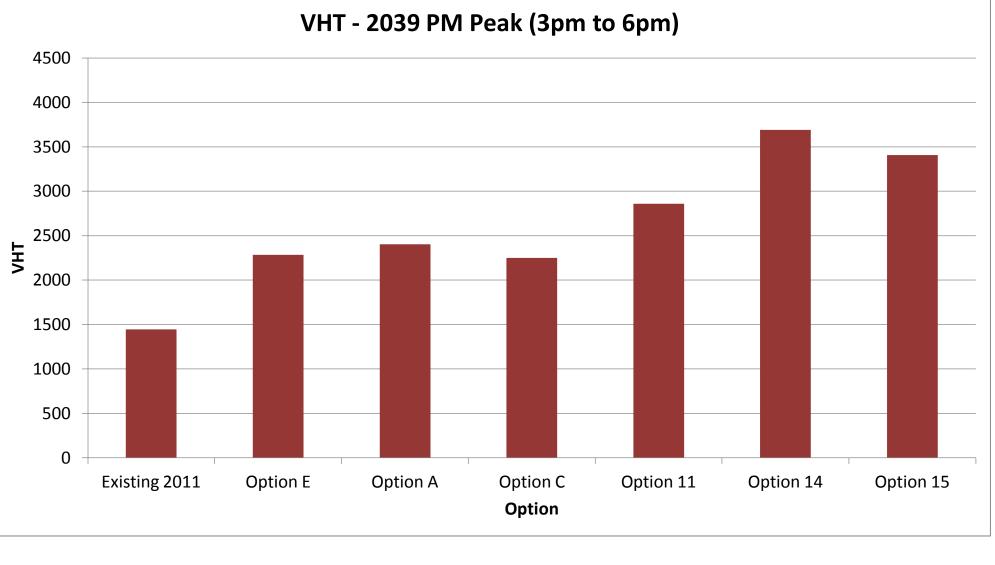


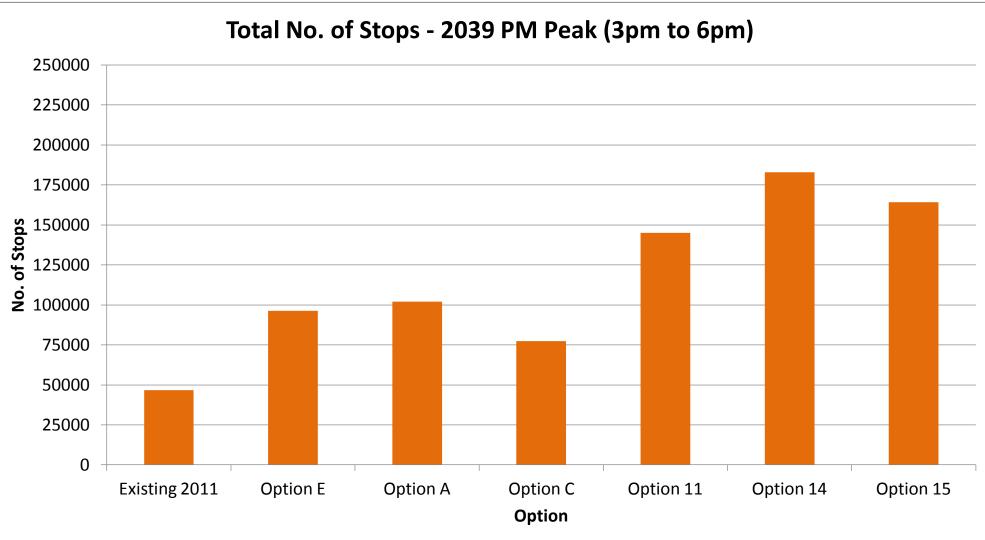



												OPT	ΓΙΟΝ											
Network Statistics	Exis	sting Conditions	S 2011		Do Minimal 202	49		Option E 2049	1		Option A 2049			Option C 2049			Option 11 2049)		Option 14 2049)		Option 15 2049)
	3-4pm	4-5pm	5-6pm	3-4pm	4-5pm	5-6pm	3-4pm	4-5pm	5-6pm	3-4pm	4-5pm	5-6pm	3-4pm	4-5pm	5-6pm	3-4pm	4-5pm	5-6pm	3-4pm	4-5pm	5-6pm	3-4pm	4-5pm	5-6pm
Total no. of incompleted trips (no. of vehicles)	531	463	315				993	854	656	1182	972	692	920	817	660	1236	1182	693	1629	1555	1028	1482	1379	896
Total no. of completed trips (no. of vehicles)]'	
- Cars	6511	6697	<u>5545</u>				11683	11614	9752	11609	11585	9837	11784	11491	0667	11510	11326	10038	15207	11088	10303	15479	11315	10138
- Light	550	553	446				983	958	772	944	986	798	999	939	796	944	926	822	1269	885	8 <u>55</u>	1267	907	852
- Heavy	129	134	115				133	97	77	134	106	80	123	93	79	124	101	85	165	108	86	170	102	87
TOTAL	7190	7384	6106				12799	12669	10601	12688	12677	10715	12907	12523	10542	12578	12353	10945	16641	12081	11244	16916	12324	11076
Average vehicle KM travelled per vehicle (km/veh) per completed trip	2.9	3.0	3.2				3.1	3.1	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.4	3.4	3.4	3.5	3.4
Average travel time per vehicle (min/veh) per completed trip	3.8	4.3	3.9				4.3	4.2	3.9	4.7	5.1	4.3	4.1	4.0	3.9	4.6	5.7	5.0	4.8	7.5	7.3	4.7	6.9	6.3
Average speed (km/h)	45.8	41.5	48.8				44.1	44.5	47.8	39.8	37.2	44.3	46.5	47.6	49.0	41.7	33.6	39.3	36.0	25.7	27.0	41.2	28.8	32.5
Average delay per completed trip (sec)	15	44	7				40	39	22	68	93	45	28	23	15	48	116	75	56	213	205	48	176	139
Freeflow Time (hrs)	443	459	399				804	784	654	789	783	662	822	792	669	835	816	715	1116	836	760	1149	857	763
Total no. of Stops*	L									1	1		L		L							0	0	0
- Cars	14040	18450							26912		52166	30317	34378	30204	21614	50014	66886	41410	60568	76685	63938	58122	71558	54452
- Light	1118	1509	809				3637	3360	2134	4161	4437	2486	2912	2438	1750	4014	<u>5592</u>	3435	5012	6044	<u>5334</u>	4742	5688	4742
- Heavy	168	185	116	_			415	308	224	407	370	229	351	248	200	397	494	287	571	627	373	499	444	328
TOTAL	15326	20144	11276				48842	45278	29271	55712	56972	33032	37641	32890	23564	54425	72971	45132	66151	83356	69646	63364	77690	59522
Total Vehicle Kilometres Travelled (VKT)	22042	22984	20064				42366	41366	34536	42477	42111	35609	43157	41692	35177	43775	42648	37130	39473	43979	39579	45493	45011	39697
Total vehicle hours travelled (VHT)	481	554	411				961	929	723	1068	1133	803	929	875	718	1049	1271	945	1026	1711	1466	1172	1564	1220
Unreleased Trips	0	0	0				0	0	0	45	69	8	0	0	0	5	110	0	101	568	189	46	255	26

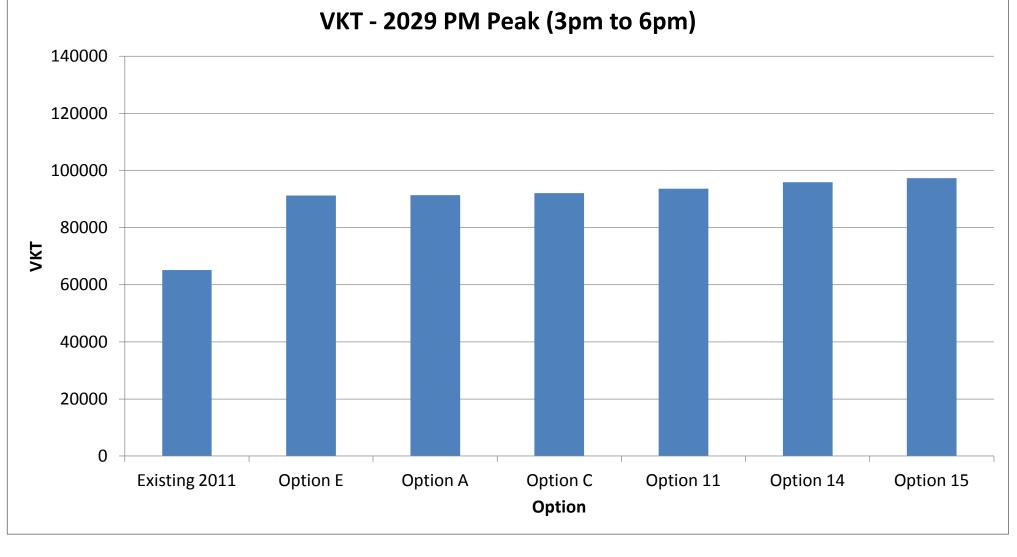


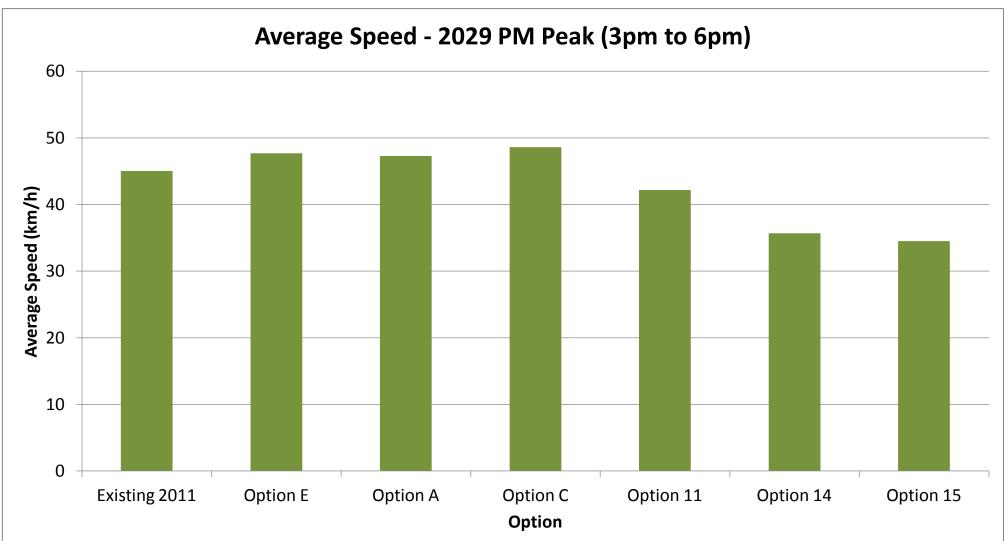


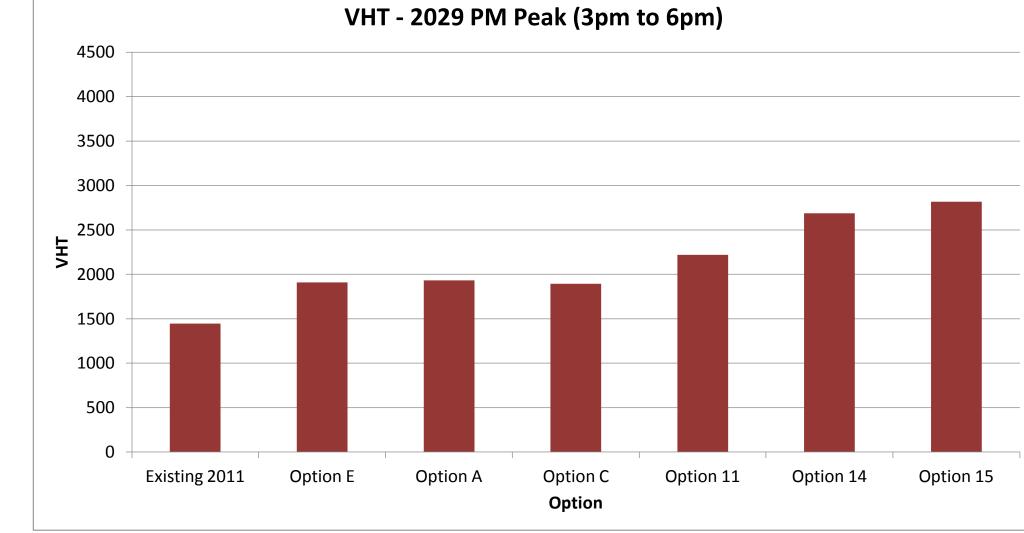


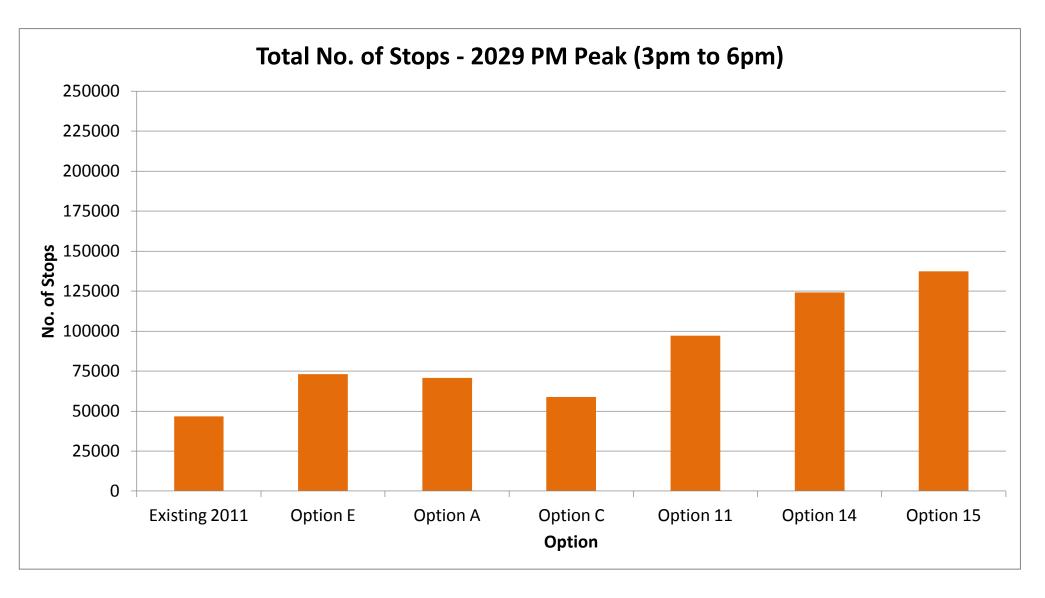


												OP ⁻	ΓΙΟΝ											
Network Statistics	Exis	ting Conditions	2011		Do Minimal 20	39		Option E 2039			Option A 2039			Option C 2039			Option 11 2039	9		Option 14 203	9		Option 15 203	9
	3-4pm	4-5pm	5-6pm	3-4pm	4-5pm	5-6pm	3-4pm	4-5pm	5-6pm	3-4pm	4-5pm	5-6pm	3-4pm	4-5pm	5-6pm	3-4pm	4-5pm	5-6pm	3-4pm	4-5pm	5-6pm	3-4pm	4-5pm	5-6pm
Total no. of incompleted trips (no. of vehicles)	531	463	315				856	770	602	916	784	600	820	751	614	1083	1032	611	1359	1334	860	1316	1198	713
Total no. of completed trips (no. of vehicles)																								
- Cars	6511	6697	5545				10955	10790	9070	10999	10704				8951	10741	10610	9283	10482	10385	9468	10480	10549	9464
- Light	550	553	446				924	871	756	911	884	747	926	892	751	896	878	753	852	848	808	858	864	792
- Heavy	129	134	115				127	104	84	128	102	89	123	102	84	119	99	83	116	102	87	123	109	88
TOTAL	7190	7384	6106				12006	11765	9911	12038	11690	9906	12060	11720	9786	11756	11588	10119	11451	11335	10363	11461	11522	10343
Average vehicle KM travelled per vehicle (km/veh) per completed trip	2.9	3.0	3.2				3.0	3.0	3.0	3.1	3.1	3.1	3.1	3.1	3.1	3.2	3.2	3.2	3.3	3.3	3.2	3.3	3.3	3.3
Average travel time per vehicle (min/veh) per completed trip	3.8	4.3	3.9				4.0	3.9	3.8	4.2	4.1	3.9	3.9	3.9	3.8	4.4	5.4	4.6	4.7	6.8	6.6	4.6	6.5	5.7
Average speed (km/h)	45.8	41.5	48.8				45.8	46.3	48.2	43.6	44.7	47.2	47.6	48.0	49.1	41.9	34.4	41.8	38.5	26.8	29.2	40.1	29.0	34.4
Average delay per completed trip (sec)	15	44	7				29	27	19	46	40	28	20	18	13	44	105	53	58	184	167	50	165	115
Freeflow Time (hrs)	443	459	399				730	706	595	728	699	590	749	722	605	755	747	649	759	753	685	771	768	686
Total no. of Stops*										1			L	L		L								
- Cars		-						<u>31434</u>			33006						0.0	32039	45043	68366	54366	41914	62848	45589
- Light	1118	1509	809				2826	<u>2595</u>	1000	2051	2704	4900	2200	24/4	1522	3419	4990	2731	<u>3</u> 690	5571	<u>4798</u>	<u>3484</u>	<u>5309</u>	<u>3976</u>
- Heavy	168	185	116				309	254	211	301	262	220	290	237	179	321	4 <u>3</u> 8	262	<u>35</u> 8	529	310	320	472	247
TOTAL	15326	20144	11276				37593	34283	24353	41421	35972	24663	29998	27555	19743	44841	65273	35032	49092	74466	59474	45717	68629	49812
Total Vehicle Kilometres Travelled (VKT)	22042	22984	20064				38327	37090	31277	38984	37430	31642	39100	37708	31585	39170	38666	33445	39474	39168	35233	40214	39937	35379
Total vehicle hours travelled (VHT)	481	554	411				836	801	649	895	838	671	821	786	644	935	1125	800	1025	1460	1207	1003	1377	1027
Unreleased Trips	0	0	0				0	0	0	0	0	0	0	0	0	8	20	0	17	251	129	10	166	25

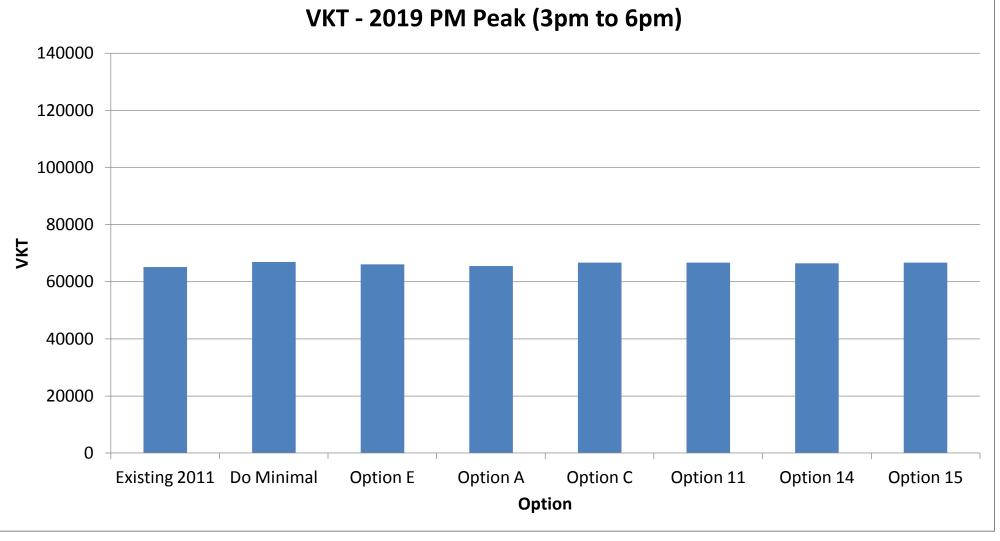


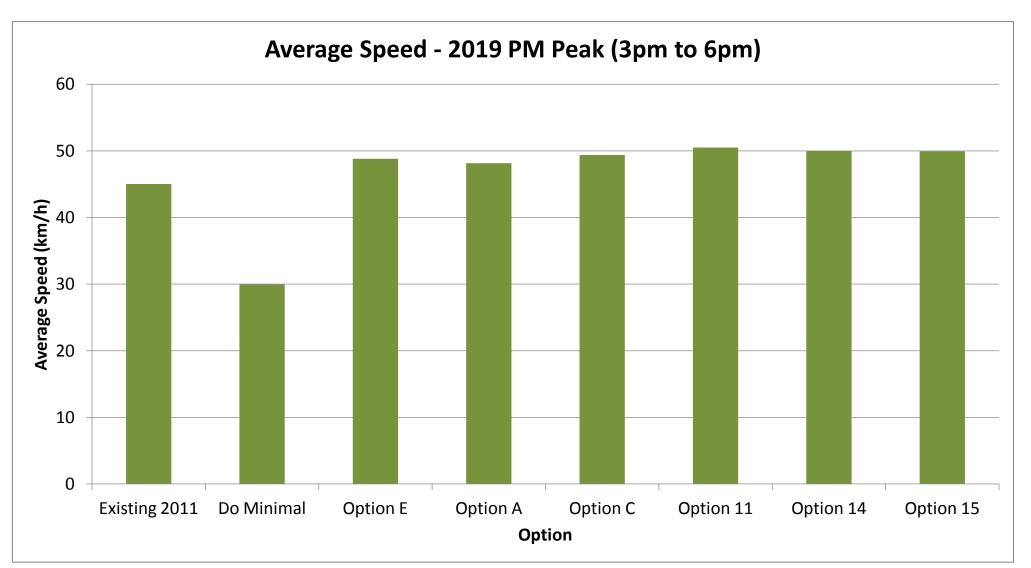


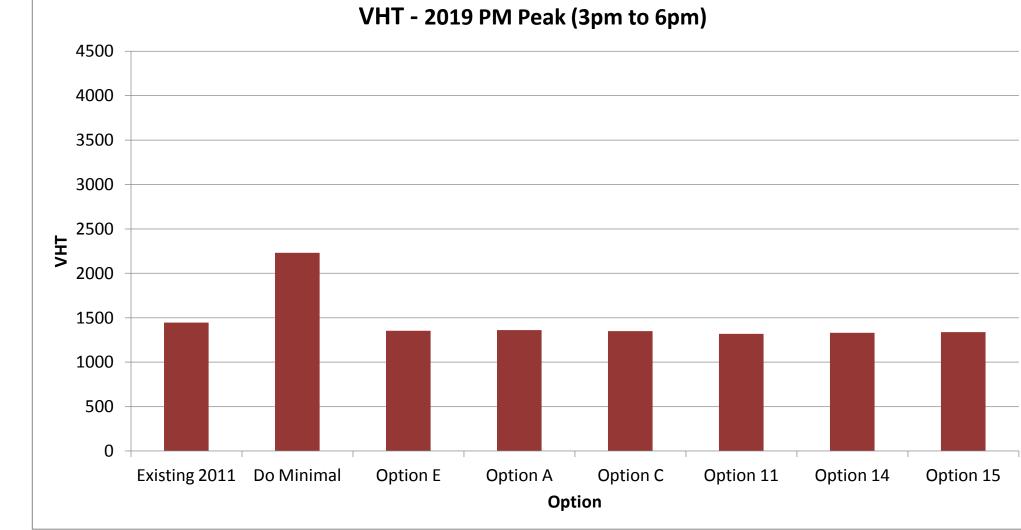


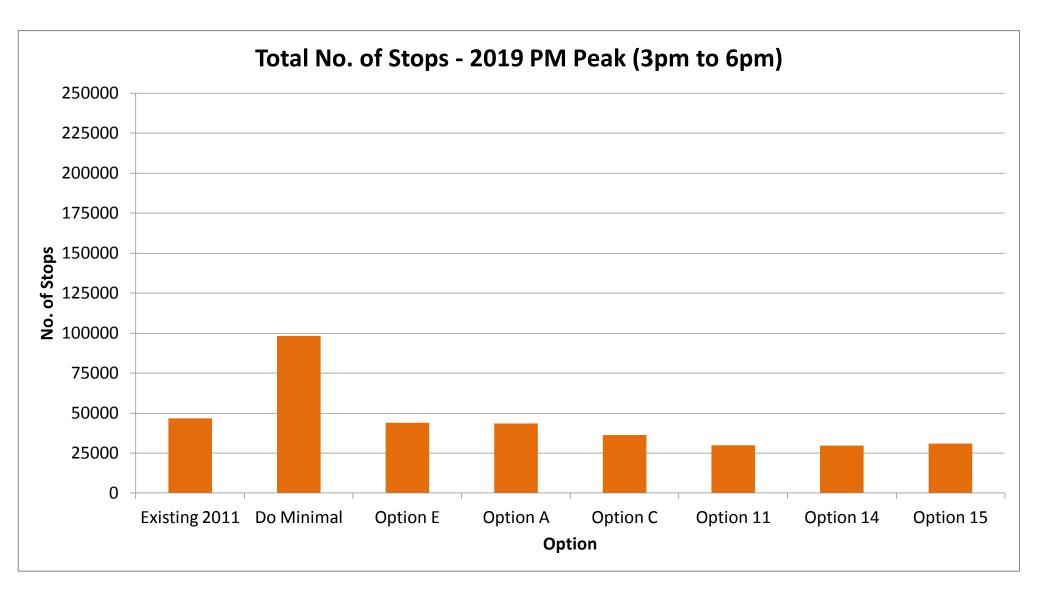


												OPT	τιον											
Network Statistics	Exis	ting Conditions	2011		Do Minimal 202	9		Option E 2029)		Option A 2029			Option C 2029			Option 11 2029	1		Option 14 2029	1		Option 15 2029	1
	3-4pm	4-5pm	5-6pm	3-4pm	4-5pm	5-6pm	3-4pm	4-5pm	5-6pm	3-4pm	4-5pm	5-6pm	3-4pm	4-5pm	5-6pm	3-4pm	4-5pm	5-6pm	3-4pm	4-5pm	5-6pm	3-4pm	4-5pm	5-6pm
Total no. of incompleted trips (no. of vehicles)	531	463	315				700	615	445	714	627	460	689	616	469	825	763	449	1031	926	475	1083	950	490
Total no. of completed trips (no. of vehicles)																								
- Cars	6511	6697	<u>5545</u>				9502	9305	7870	9556	9305	7874	9490	9328	7868	9391	9245	8022	9176	9359	8177	9196	9306	8233
- Light	550	553	446				799	783	651	793	773	655	794	745	653	766	761	650	776	766	670	<u>765</u>	<u>75</u> 9	685
- Heavy	129	134	115				118	95	82	114	91	<u>78</u>	123	95	77	118	96	77	118	93	77	115	103	81
TOTAL	7190	7384	6106				10419	10182	8604	10463	10169	8607	10408	10168	8598	10275	10102	8748	10069	10218	8923	10076	10168	8999
Average vehicle KM travelled per vehicle (km/veh) per completed trip	2.9	3.0	3.2				3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.1	3.1	3.1	3.1	3.1	3.1	3.2	3.2	3.2
Average travel time per vehicle (min/veh) per completed trip	3.8	4.3	3.9				3.8	3.8	3.7	3.9	3.8	3.7	3.7	3.7	3.7	4.1	4.6	4.4	4.3	5.9	5.1	4.4	6.2	5.5
Average speed (km/h)	45.8	41.5	48.8				47.1	47.6	48.6	46.7	47.2	48.1	48.2	48.5	49.2	45.0	39.5	42.4	41.4	30.7	36.7	40.4	29.7	35.2
Average delay per completed trip (sec)	15	44	7				22	21	16	29	26	22	16	15	12	26	59	45	38	134	86	45	151	102
Freeflow Time (hrs)	443	459	399				624	606	511	617	595	500	631	616	521	650	635	548	651	658	571	656	661	583
Total no. of Stops*]	l	1					L								1
- Cars		18450					25629	23509	17631		22712				14265	27995	36614	24683		50293	32407	33953	54186	37838
- Light	1118	1509	809				2125	2001	1412	2068	1895	1424	1724	1526	1233	2315	2840	2051	2507	4061	2746	2728	4415	3275
- Heavy	168	185	116				268	263	220	200	194	176	231	206	155	258	282	194	2 <u>57</u>	442	228	276	362	256
TOTAL	15326	20144	11276				28022	25773	19264	27273	24801	18591	22287	20810	15652	30568	39736	26928	33908	54796	35382	36957	58964	41369
Total Vehicle Kilometres Travelled (VKT)	22042	22984	20064				32642	31780	26762	32924	31760	26701	32851	32087	27167	33303	32425	27898	33376	33651	28882	33710	33911	29668
Total vehicle hours travelled (VHT)	481	554	411				693	668	551	705	673	555	681	661	552	741	821	658	805	1095	787	835	1141	842
Unreleased Trips	0	0	0				0	0	0	0	0	0	0	0	0	0	52	0	2	49	0	14	111	0





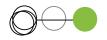



												OP	ΓΙΟΝ											
Network Statistics	Exis	sting Conditions	2011		Do Minimal 201	9		Option E 2019)		Option A 2019			Option C 2019			Option 11 2019			Option 14 2019)		Option 15 2019)
	3-4pm	4-5pm	5-6pm	3-4pm	4-5pm	5-6pm	3-4pm	4-5pm	5-6pm	3-4pm	4-5pm	5-6pm	3-4pm	4-5pm	5-6pm	3-4pm	4-5pm	5-6pm	3-4pm	4-5pm	5-6pm	3-4pm	4-5pm	5-6pm
Total no. of incompleted trips (no. of vehicles)	531	463	315	728	863	534	475	456	315	500	449	319	478	438	321	476	428	312	498	434	310	504	441	328
Total no. of completed trips (no. of vehicles)																						0	0	0
- Cars	6511	6697	5545	7100	6871	6154	7297	7111	6023	7261	7217	6007	7343	7130	6030	7317	7186	6032	7258	7178	<u>5964</u>	7266	7180	6000
- Light	550	553	446	591	<u>563</u>	508	623	581	497	598	594	495	610	589	484	603	<u>597</u>	490	<u>589</u>	573	509	602	596	494
- Heavy	129	134	115	74	62	70	77	72	6 <u>3</u>	81	70	63	91	73	<u>59</u>	8 ₃	74	60	80	75	66	78	71	66
TOTAL	7190	7384	6106	7765	7496	6731	7997	7764	6582	7941	7882	6565	8044	7792	6573	8003	7857	6582	7927	7826	6538	7946	7848	6560
Average vehicle KM travelled per vehicle (km/veh) per completed trip	2.9	3.0	3.2	2.8	2.9	2.9	2.8	2.8	2.9	2.8	2.8	2.8	2.9	2.8	2.9	2.9	2.8	2.9	2.9	2.9	2.9	2.9	2.9	2.9
Average travel time per vehicle (min/veh) per completed trip	3.8	4.3	3.9	4.1	5.5	6.6	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.4	3.4	3.4	3.5	3.4	3.4	3.5	3.4	3.4
Average speed (km/h)	45.8	41.5	48.8	39.6	27.5	25.4	48.5	48.6	49.3	47.9	48.1	48.5	49.2	49.2	49.8	50.3	50.3	51.0	49.7	49.9	50.5	49.5	49.9	50.5
Average delay per completed trip (sec)	14.8	43.6	7.2	35	120	176	14	13	12	20	20	18	11	10	8	0	0	0	1	1	0	2	1	0
Freeflow Time (hrs)	442.9	459.3	398.7	483	473	429	455	441	372	439	433	360	465	443	376	475	461	386	475	464	389	476	466	392
Total no. of Stops*													L			L						0	0	0
- Cars	14040	18450	10350	24024	35754	29991	15117	14177	10819	14639	14306	10830	12517	11696	8923	10318	9800	7067	10366	9804	6998	10791	10187	7431
- Light	1118	1509	809	2041	2939	2563	1296	1191	941	1225	1234	882	1073	976	698	888	844	616	820	780	598	910	830	633
- Heavy	168	185	116	183	325	327	136	139	128	125	126	117	149	105	86	120	110	97	105	114	87	90	84	66
TOTAL	15326	20144	11276	26249	39019	32881	16549	15507	11887	15988	15666	11829	13738	12777	9707	11326	10755	7780	11291	10697	7683	11792	11101	8129
Total Vehicle Kilometres Travelled (VKT)	22042.0	22983.6	20063.8	23438	22837	20601	23677	22930	19431	23304	23034	19186	24146	22969	19538	23955	23187	19482	23777	23220	19505	23762	23351	19611
Total vehicle hours travelled (VHT)	480.9	553.5	411.3	592	829	810	488	471	394	486	479	395	491	467	392	476	461	382	479	466	386	480	468	389
Unreleased Trips	0	0	0	4	128	190	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Appendix E

Appendix E

Point to Point Travel Time Results and Routes

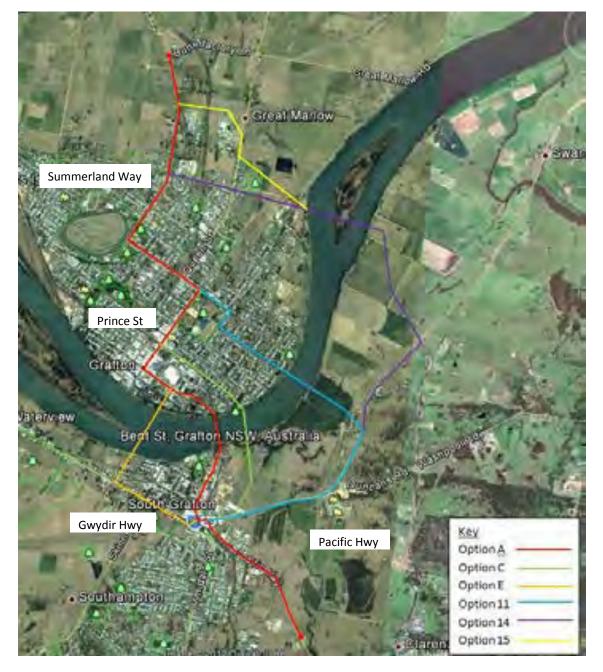


Route 1, Tyson St to Pound St



MELBOURNE • SYDNEY • BRISBANE • CANBERRA • ADELAIDE • GOLD COAST • TOWNSVILLE www.gta.com.au

Route 2, Centenary Dr to Pound St



Route 3, Pound St to Butterfactory Ln

Route 4, Tyson St to Butterfactory Ln via Propsed Bridge

	C o o o ovi o	3) MA	3-9AM)	PM (4	-5PM)
Design Year	Scenario	NB	SB	NB	SB
0011	Observed	572	379	416	502
2011	Base	621	346	450	464
	Do Minimal	792	724	628	1354
	E	411	392	416	373
-	A	401	416	407	392
2019	С	404	407	404	359
	11	419	342	418	354
-	14	423	421	416	360
-	15	425	353	420	359
	E	412	403	412	383
-	A	417	434	417	398
2020	С	410	411	410	363
2029	11	439	348	439	456
-	14	671	362	671	486
-	15	677	358	677	472
	E	411	436	424	395
-	A	435	426	519	418
2020	С	408	365	418	371
2039	11	435	355	791	569
-	14	756	374	841	606
	15	734	369	880	504
	E	414	435	428	429
-	А	505	506	589	537
20.49	С	414	376	428	371
2049	11	461	531	822	607
-	14	861	576	894	701
	15	839	705	852	616

Route 1, Point to Point Travel Times (seconds)

	C	3) MA	3-9AM)	PM (4	-5PM)
)esign Year	Scenario	WB	EB	WB	EB
0011	Observed	650	462	494	585
2011	Base	711	452	524	572
	Do Minimal	883	546	575	748
	E	498	486	503	472
	A	492	453	496	485
2019	С	511	521	511	473
	11	516	450	515	461
	14	516	527	510	464
	15	514	456	511	461
	E	503	489	510	480
	A	510	463	511	493
0000	С	521	528	517	479
2029	11	536	453	663	561
	14	766	466	903	585
	15	768	461	905	573
	E	505	498	514	486
	A	532	471	552	515
	С	524	486	527	488
2039	11	534	458	890	668
	14	853	476	939	704
	15	825	470	954	592
	E	515	498	522	510
	А	605	484	570	634
00.40	С	538	592	531	490
2049	11	562	462	924	684
	14	957	495	988	750
	15	927	479	945	698

Route 2, Point to Point Travel Times (seconds)

losian Voar	Seengrie	AM (8-9AM)	PM (4	-5PM)
)esign Year	Scenario	NB	SB	NB	SB
2011	Observed	324	913	324	757
2011	Base	276	906	299	732
	Do Minimal	287	277	283	309
-	E	287	281	281	281
-	A	285	278	282	278
2019	С	287	278	282	278
-	11	282	280	277	280
-	14	286	284	280	283
-	15	293	292	290	290
	E	299	283	291	283
-	A	304	281	291	279
0000	С	299	281	289	280
2029	11	304	282	285	283
-	14	297	289	286	284
-	15	301	294	295	292
	E	311	285	296	284
-	A	323	282	295	281
0000	С	323	282	298	281
2039	11	316	284	292	284
-	14	309	293	292	286
-	15	305	295	298	292
	E	348	286	309	284
-	А	326	283	310	400
20.49	С	335	285	304	282
2049	11	352	285	297	284
	14	324	298	311	289
	15	313	297	300	296

Route 3, Point to Point Travel Times (seconds)

esign Year	Scenario	AM (8	-9AM)	PM (4	-5PM)
esign real	Scenano	NB	SB	NB	SB
2011	Observed*	913	703	757	826
2011	Base*	906	622	732	764
	Do Minimal	1080	1001	911	1664
	E	684	671	670	650
	A	687	693	688	670
2019	С	582	589	581	567
	11	589	585	576	571
	14	592	581	573	564
	15	589	580	578	564
	E	712	687	688	668
-	A	720	715	710	677
0000	С	600	602	596	575
2029 -	11	611	590	587	575
-	14	583	582	575	566
-	15	598	580	589	569
	E	727	722	703	682
-	A	758	708	814	699
0000	С	647	643	605	581
2039 -	11	625	598	595	585
-	14	589	591	577	571
-	15	593	582	590	573
	E	875	712	744	727
-	А	831	786	899	937
00.40	С	791	674	623	591
2049 -	11	683	595	601	590
	14	586	592	581	587
-	15	600	586	589	574

Route 4, Point to Point Travel Times (seconds)

* Observed and Base travel time results utilise the existing bridge.

Appendix F

Bridge Volumes

MICROSIMULATION MODELLING RESULTS Bridge Crossing Volumes - AM Peak (7-9AM)

		AM Peak										
Year	Options	EXI	STING BRIDGE	NEW BRIDGE								
Tear	Options	Northbound	Southbound	Total	Northbound	Southbound	Total					
2011	Base Model 2011	2167	1450	3617	N/A	N/A	N/A					
	Do Minimal	2314	1625	3939	N/A	N/A	N/A					
	E	762	622	1384	1690	1007	2697					
	А	N/A	915	915	2460	728	3188					
2019	С	936	420	1356	1583	1226	2808					
	11	1796	1000	2796	677	619	1296					
	14	1982	1231	3212	508	428	936					
	15	1993	1248	3241	505	417	921					
	E	1058	791	1849	2491	1557	4048					
	А	N/A	1492	1492	3552	850	4402					
2029	С	1266	533	1798	2285	1839	4123					
2029	11	2414	1413	3827	1123	955	2079					
	14	2538	1648	4186	856	689	1545					
	15	2560	1713	4273	840	629	1468					
	E	1212	1209	2421	2997	1643	4640					
	А	N/A	1725	1725	4250	1090	5340					
2039	С	1360	753	2113	2846	2043	4889					
2059	11	2498	1404	3902	1617	1444	3061					
	14	2609	2060	4669	1261	830	2090					
	15	2635	2083	4718	1235	788	2023					
	E	1392	1372	2764	3397	1834	5231					
	А	N/A	2137	2137	4852	1067	5919					
2049	С	1641	897	2539	3164	2267	5431					
2049	11	2607	1772	4379	2127	1388	3515					
	14	2652	2212	4864	1714	960	2673					
	15	2654	2248	4902	1664	915	2578					

Bridge Crossing Volumes - PM Peak (3-5PM)

		PM Peak											
Year	Options	EXI	STING BRIDGE		NEW BRIDGE								
rear	Options	Northbound	Southbound	Total	Northbound	Southbound	Total						
2011	Base Model 2011	2037	2544	4581	N/A	N/A	N/A						
	Do Minimal	2422	2663	5086	N/A	N/A	N/A						
	E	847	1395	2243	1604	1636	3240						
	А	N/A	1835	1835	2463	1140	3603						
2019	С	1207	1277	2483	1210	1762	2972						
	11	2043	2287	4331	355	694	1049						
	14	2170	2399	4570	253	616	869						
	15	2220	2476	4696	238	596	835						
	E	1075	1694	2769	2356	2451	4807						
	А	N/A	2705	2705	3465	1454	4919						
2029	С	1569	1680	3250	1908	2436	4343						
2025	11	2569	2868	5437	837	1167	2004						
	14	2654	2865	5519	648	1127	1775						
	15	2658	2874	5531	726	1181	1906						
	E	1229	1985	3214	2656	2776	5432						
	A	N/A	2810	2810	3858	1992	5849						
2039	С	1741	2061	3802	2150	2725	4875						
2000	11	2652	2911	5563	1145	1738	2883						
	14	2664	2924	5588	942	1549	2491						
	15	2650	2906	5556	1023	1720	2743						
	E	1282	2198	3480	2897	3208	6106						
	A	N/A	3155	3155	4152	2151	6303						
2049	С	1761	2235	3996	2456	3095	5551						
2045	11	2653	2921	5574	1384	2245	3629						
	14	2663	2919	5582	1149	2130	3279						
	15	2663	2921	5585	1236	2248	3484						

Appendix G

Appendix G

Annualised BCR Calculations for All Recorded Trips (Completed and Incompleted)

Appendix G

Appendix G: Annualised BCR Calculations for all recorded trips (completed and incompleted)

		Daily															
	AM Peak (7-9pm)						PM Peak (3-5pm)			Off Peak				Annual			
Year	Option	VKT (km)	VHT (Hrs)	Stops (No.)	Speed (km/h)	VKT (km)	VHT (Hrs)	Stops (No.)	Speed (km/h)	VKT (km)	VHT (Hrs)	Stops (No.)	Speed (km/h)	VKT (km)	VHT (Hrs)	Stops (No.)	Speed (km/h)
2011	Base Year	37893	849	28303	45.6	45023	1034	. 35470	43.7	175347	4143	159273	42.3	86517826	2018962	2 74720477	42.9
2019	"Do Minimum"	43644	1040	38997	43.6	46274	. 1420	65266	33.6	195348	4616	177441	42.3	95564127	2370626	94371007	40.3
	Option E	43257	843	24112	51.4	46602	959	32053	48.6	192629	3892	122693	49.5	94633246	1907556	59917287	49.6
	Option A	43456	852	23337	51.0	46335	966	31653	48.0	196025	4055	120221	48.3	95748511	1967231	58695713	48.7
	Option C	43842	845	20647	51.9	47112	957	26513	49.2	193060	3834	97691	50.4	. 95144428	1888285	48525092	50.4
	Option 11	43955	823	15915	53.4	47135	937	22079	50.3	192913	3755	74710	51.4	95141148	1847583	37755502	51.5
	Option 14	44271	852	15429	52.0	46990	944	. 21988	49.8	195840	3834	77705	51.1	96178946	1886012	38566134	51.0
	Option 15	44265	844	15753	52.4	. 47108	948	22895	49.7	195031	3813	77015	51.2	95945458	1877857	38747295	5 51.1
2029	Indicative "Do Minimum"	57798	1514	78729	39.7	61281	. 2067	, 131763	30.6	258701	6717	358230	38.5	126556225	3449786	5 190521894	36.7
	Option E	59642	1191	39070	50.1	. 64419	1361	53791	47.4	248642	5024	158370	49.5	124855709	2537977	8416262	49.2
	Option A	60227	1208	36421	49.9	64681	. 1378	52067	46.9	253026	5234	155180	48.3	126607796	2619554	8162867	<u>48.3</u>
	Option C	60263	1182	32287	51.0	64935	1342	43095	48.4	249199	4949	126098	50.4	. 125422909	2503605	67495598	50.1
	Option 11	60849	1195	31133	51.1	. 65726	1562	70303	42.2	249010	4847	96434	51.4	125820822	2547312	66286834	49.4
	Option 14	60714	1304	40260	47.2	67021	. 1900	88701	36.1	252788	4948	100301	51.1	127475380	2731232	76802758	46.7
	Option 15	59619	1299	41345	46.6	67612	1976	95923	35.0	251744	4922	99410	51.2	126956531	2745974	79287229	46.2
	Indicative "Do Minimum"	67649	1820	97297	38.6	71725	2485	162840	29.8	302793	8075	442719	37.5	148125859	4147441	235456826	35.7
	Option E	70802	1433	49369	49.5	75414	1636	71867	46.1	289155	5843	184174	49.5	145849162	2985692	102312367	48.8
2039	Option A	72074	1482	49952	48.7	76412	1732	77384	44.1	. 294253	6087	180464	48.3	148317407	3115785	103113066	6 47.6
	Option C	71822	1465	44550	49.3	76811	. 1606	57550	47.8	289802	5756	146644	50.4	146875734	2957063	83329271	. 49.7
	Option 11	73052	1470	46237	50.1	. 77835	2060	110118	38.1	. 289582	5637	112147	51.4	147557024	3070648	8 8994828	48.1
	Option 14	71882	1665	51797	44.8	78644	. 2486	123569	32.7	293976	5755	116643	51.1	148908431	3318230	97822927	44.9
	Option 15	71530	1647	53579	44.8	8 80146	2380	114357	34.6	292762	5723	115608	51.2	148886438	3266452	9498715	5 45.6
	Indicative "Do Minimum"	73566	2067	114022	37.0	77998	2822	190831	28.5	329276	9169	518819	35.9	161081441	4709324	275930006	34.2
2049	Option E	79495	1742	72582	46.0	83732	1889	94114	44.3	310235	6269	197601	49.5	158610103	3316573	12203942	47.8
	Option A	81538	1737		47.2	84583	2202	112677	38.5	315704	6530	193620	48.3	161411313	3507153	124219289	46.0
	Option C	81151	1806	, ,		. 84850	1804	. 70525	47.1	. 310929	6175	157335	50.4	159771573	3277872	99079062	48.7
	Option 11	81895	1749	63663	47.4	. 86421	. 2320	127404	37.7	310693	6048	120323	51.4	160468157	3388796	104315423	3 47.4
	Option 14	80186	2131	75413		1	2934	. 142321	30.8	315408	6174	125147	51.1	161988536	3765130	114865374	43.0
	Option 15	78538	2203	74547	38.0	90499	2736	133041	33.8	314105	6141	124036	51.2	161852474	3711584	111093843	43.6

Notes: -Annual costs calculated using annualisation factor of 335.

-Indicative "Do Minimum" case for 2029 - 2049 obtained through estimation process as described in Ch 5.4 of GTA RODR Report.

- A 87 High Street South PO Box 684 KEW VIC 3101
- P +613 9851 9600 F +613 9851 9610
- E melbourne@gta.com.au

Sydney

- A Level 2, 815 Pacific Highway CHATSWOOD NSW 2067 PO Box 5254
- WEST CHATSWOOD NSW 1515 P +612 8448 1800
- F +612 8448 1810
- E sydney@gta.com.au

Brisbane

- A Level 3, 527 Gregory Terrace BOWEN HILLS QLD 4006 PO Box 555 FORTITUDE VALLEY QLD 4006
- P +617 3113 5000
- F +617 3113 5010
- E brisbane@gta.com.au

Canberra

- A Unit 4, Level 1, Sparta Building, 55 Woolley Street A Level 1, 25 Sturt Street PO Box 62 DICKSON ACT 2602
- P +612 6243 4826
- F +612 6243 4848
- E canberra@gta.com.au

Adelaide

- A Suite 4, Level 1, 136 The Parade PO Box 3421
- NORWOOD SA 5067 P +618 8334 3600
- F +618 8334 3610
- E adelaide@gta.com.au

Gold Coast

- A Level 9, Corporate Centre 2 Box 37 1 Corporate Court
- BUNDALL QLD 4217
- P +617 5510 4800
- F +617 5510 4814
- E goldcoast@gta.com.au

Townsville

- PO Box 1064 TOWNSVILLE QLD 4810
- P +617 4722 2765
- F +617 4722 2761
- E townsville@gta.com.au

